
PReach: A Heuristic for Probabilistic Reachability to Identify
Hard to Reach Statements ∗

Seemanta Saha
University of California, Santa Barbara

Santa Barbara, CA, USA
seemantasaha@cs.ucsb.edu

Mara Downing
University of California, Santa Barbara

Santa Barbara, CA, USA
maradowning@cs.ucsb.edu

Tegan Brennan
University of California, Santa Barbara

Santa Barbara, CA, USA
tegan@cs.ucsb.edu

Tevfik Bultan
University of California, Santa Barbara

Santa Barbara, CA, USA
bultan@cs.ucsb.edu

ABSTRACT

We present a heuristic for approximating the likelihood of reaching
a given program statement using 1) branch selectivity (representing
the percentage of values that satisfy a branch condition), which
we compute using model counting, 2) dependency analysis, which
we use to identify input-dependent branch conditions that influ-
ence statement reachability, 3) abstract interpretation, which we
use to identify the set of values that reach a branch condition,
and 4) a discrete-time Markov chain model, which we construct
to capture the control flow structure of the program together with
the selectivity of each branch. Our experiments indicate that our
heuristic-based probabilistic reachability analysis tool PReach can
identify hard to reach statements with high precision and accuracy
in benchmarks from software verification and testing competitions,
Apache Commons Lang, and the DARPA STAC program. We pro-
vide a detailed comparison with probabilistic symbolic execution
and statistical symbolic execution for the purpose of identifying
hard to reach statements. PReach achieves comparable precision
and accuracy to both probabilistic and statistical symbolic execu-
tion for bounded execution depth and better precision and accuracy
when execution depth is unbounded and the number of program
paths grows exponentially. Moreover, PReach is more scalable than
both probabilistic and statistical symbolic execution.
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1 INTRODUCTION

Software quality assurance is one of the most fundamental prob-
lems in computing. The most common software quality assurance
technique is software testing. Although there has been a surge of
progress in automated software testing techniques such as random
testing, fuzzing and symbolic execution in recent years, there are
remaining challenges. On one hand, fuzzing and random testing
techniques are comparatively scalable, but have difficulty in ex-
ploring hard to reach program paths. On the other hand, symbolic
execution based techniques can explore hard to reach program paths
by solving path constraints, but are not as scalable.

Hybrid testing techniques [16, 26, 38, 39, 42] combine concrete
(e.g., random testing, fuzzing) and symbolic techniques in order
to improve testing effectiveness. Typically, a strategy function for
hybrid testing decides when to apply concrete techniques and when
to apply symbolic techniques to achieve scalable and effective ex-
ploration of the program behaviors. In order to choose between
concrete and symbolic approaches, most existing strategies assess
the difficulty of concrete testing based on the saturation of random
testing [26, 38] or probabilistic program analysis [39, 42]. Determin-
ing the likelihood (or, conversely, difficulty) of reaching a program
statement is critical for assessing the difficulty of concrete testing,
and hence developing an effective hybrid testing strategy. There
are two existing approaches that address this problem: probabilistic
and statistical symbolic execution.

Probabilistic symbolic execution [20] is an extension of symbolic
execution that computes probabilities of program paths. However,
probabilistic symbolic execution suffers from the same limitations
as symbolic execution: 1) It can only analyze program behaviors up
to a certain fixed execution depth, hence it cannot analyze behaviors
of arbitrarily large program paths. 2) Due to exponential increase in
number of paths with increasing execution depth (path explosion
problem), the cost of symbolic execution increases exponentially
with increasing execution depth. 3) Although the sizes of path con-
straints generated by symbolic execution increase linearly with
the execution depth, since the worst case complexity of constraint
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solvers is exponential, the linear increase in path constraint sizes
can lead to exponential increase in analysis cost. Hence, path ex-
plosion combined with increasing sizes of path constraints can lead
to double exponential blow up in the cost of symbolic execution,
limiting its practical applicability.

Statistical symbolic execution [18] is more efficient and scalable
compared to probabilistic symbolic execution [20]. However, it
cannot compute precise reachability probabilities, rather provides
approximate reachability probabilities with statistical guarantee.
Statistical symbolic execution suffers from similar issues as prob-
abilistic symbolic execution. There are two variants of statistical
symbolic execution: 1) statistical analysis based on Monte Carlo
sampling of symbolic paths, and 2) hybrid analysis combining both
statistical and exact analysis based on informed sampling. One of
the drawbacks of pure statistical sampling is that it needs to sample
a large number of paths to achieve high statistical confidence. In-
formed sampling obtains more precise results and converges faster
than a purely statistical analysis, but its effectiveness suffers when
the number of program paths grows exponentially.

In this paper, we present a heuristic for probabilistic reachability
analysis to identify hard to reach program statements that addresses
the above shortcomings of probabilistic symbolic execution and
statistical symbolic execution. In particular, 1) our approach can
model behaviors of arbitrarily long paths, 2) it does not suffer from
path explosion, i.e., the cost of our analysis increases polynomially
with the size of the program (and does not depend on the execution
depth) [23], and finally, 3) it solves constraints arising from branch
conditions rather than path constraints which reduces the cost of
constraint solving.

Our approach, which we implemented in our tool PReach, works
as follows (Figure 1). In order to compute reachability probability
of statements, we introduce a concept called branch selectivity that
determines the proportion of values satisfying a given branch con-
dition. A branch is very selective if only a few values satisfy the
branch condition. On the other hand, if a lot of values satisfy the
branch condition, then the branch is not very selective. Given a tar-
get statement in a program, PReach identifies the input dependent
branch conditions that influence the reachability probability of that
statement using dependency analysis. Then, PReach constructs
a discrete-time Markov chain model from the control flow graph
of the program by computing branch selectivity of each branch
condition that influences the reachability probability of the target
statement. PReach uses abstract interpretation to determine the
set of values that reach each branch condition and model counting
to compute the branch selectivity value for each branch in the pro-
gram that influences statement reachability. Finally, PReach uses a
probabilistic model checker to compute the reachability probabil-
ity of the target statement based on the constructed discrete-time
Markov chain model.

One shortcoming of our approach is that it is not a sound pro-
gram analysis technique and hence, it does not provide guarantees
in terms of the precision or accuracy of the reachability probabilities
it reports. On the other hand, though, bounded symbolic execution
is theoretically sound up to the execution bound, and probabilistic
symbolic execution can quantify how much of the execution space
is not explored due to the execution bound [18], for unbounded

executions, both probabilistic symbolic execution and statistical
symbolic execution are not sound either.

We experimentally evaluate PReach on programs from the SV-
COMP benchmark set used in Competition on Software Verifica-
tion [8] and Competition on Software Testing [9]. Each program
in this benchmark set contains an assert statement. We use these
assert statements as the target of our probabilistc reachability anal-
ysis. We evaluate the effectiveness of our technique in separating
hard to reach assert statements (i.e., assert statements with low
reachability probability) from easy to reach assert statements (i.e.,
assert statements with high reachability probability) using a proba-
bility threshold (i.e., if the reachability probability of a statement is
below the given threshold we classify it as hard to reach).

In order to determine the ground truth, we use a generator based
random fuzzer that is based on JQF [28] and ZEST [29]. We set a
time limit for the random fuzzer, and the assert statements that
are not reached within the given timeout are marked as the hard
to reach assert statements. Of the 142 programs we used in our
experiments, the random fuzzer times out on 51 programs. PReach
classifies the programs that the random fuzzer times out on as hard-
to-reach, with 95.8% precision and 95.1% accuracy. In particular, our
technique correctly classifies 135 out of 142 programs and generates
only 2 false positives (reports hard to reach although the fuzzer does
not time out) and 5 false negatives (reports easy to reach although
the fuzzer times out).

In order to further evaluate the effectiveness of our probabilistic
reachability analysis, we provide a detailed experimental compari-
son with the probabilistic symbolic execution (PSE) [20] and statisti-
cal symbolic execution (SSE) [18] extensions to Symbolic PathFinder
(SPF) [30] tool. Experimental results show that for programs with
bounded execution depth, PSE achieves very high precision and
accuracy to identify hard to reach cases. However, PReach out-
performs PSE for programs with unbounded execution depth in
terms of precision, accuracy and average analysis time. For large
search depths PSE is unable to analyze 38% of the target programs
demonstrating its limitations in terms of applicability and scala-
bility, whereas PReach can analyze 100%. We compare PReach
with SSE on the set of programs that PSE performs poorly. SSE was
unable to analyze 27% of these programs and PReach outperforms
SSE in terms of precision, accuracy, and average analysis time.

Finally, we analyze 24 target statements in 18 methods from
Apache Commons Lang [1] and DARPA STAC Benchmarks [4].
PReach can classify 19 of the 24 target statements correctly demon-
strating its effectiveness on real world programs, whereas PSE and
SSE were able to successfully analyze and classify only one.

2 OVERVIEW

We formalize probabilistic reachability analysis as follows. Given
a program 𝑝 , let 𝑖 denote the input for the program, and 𝐼 denote
the domain of inputs (i.e., 𝑖 ∈ 𝐼 ). Note that 𝑖 can be a scalar value, a
tuple, or a list of values. Given a target statement 𝑡 in program 𝑝 ,
the goal of probabilistic reachability analysis is to determine how
likely it is to reach target statement 𝑡 . We do this by determining
how likely it would be to pick inputs that result in an execution
that reaches 𝑡 . In order to determine how likely it would be to pick
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Figure 1: Probabilistic Reachability Heuristic in PReach

1 public class Main {
2 public static void main(String [] args) {
3 int arg = Verifier.nondetInt ();

4 if ( arg < 0 )

5 return;
6 int x = arg / 5;
7 int y = arg / 5;
8 Main inst = new Main ();
9 inst.test(x, y);
10 }
11 public void test(int x, int z) {
12 System.out.println("Testing ExSymExe7");
13 int y = 3;
14 z = x - y - 4;

15 if ( z != 0 )

16 System.out.println("branch FOO1");
17 else {
18 System.out.println("branch FOO2");

19 assert false;

20 }

21 if ( y != 0 )

22 System.out.println("branch BOO1");
23 else
24 System.out.println("branch BOO2");
25 }
26 }

Figure 2: An example based on SV-COMP benchmark

such inputs, we determine the probability of picking such inputs if
inputs are chosen randomly. We define P(𝑝, 𝑡) as:

P(𝑝, 𝑡) denotes the probability of reaching statement
𝑠 during the execution of program 𝑝 on input 𝑖 if 𝑖 is
selected randomly from the input domain 𝐼 .

We assume uniform distribution of inputs in our current implemen-
tation. However, our technique can be easily extended to support
any input distribution by integrating usage profiles [18] used in
other probabilistic analysis techniques.

It is well-known that determining reachability of a statement
in a program is an uncomputable problem. Hence, determining
P(𝑝, 𝑡) precisely is also an uncomputable problem. In this paper we
present a heuristic approach that approximates P(𝑝, 𝑡). We report
the reachability probability as a real number between 0 and 1.
Branch Selectivity. Our heuristic approximation of P(𝑝, 𝑡) relies
on a concept we call branch selectivity. Given a branch 𝑏, branch
selectivity S(𝑏) is proportional to the ratio of the number of values
that satisfy the condition for branch 𝑏 to the total number of values
in the domain of condition for branch 𝑏. Formally, given a branch 𝑏,
let 𝐷𝑏 denote the Cartesian product of the domains of the variables
that appear in 𝑏, and let𝑇𝑏 ⊆ 𝐷𝑏 denote the set of values for which

branch 𝑏 evaluates to true. Let |𝐷𝑏 | and |𝑇𝑏 | denote the number of
elements in these sets, respectively. Then, S(𝑏) = |𝑇𝑏 |

|𝐷𝑏 | .
So, the selectivity of a branch gets closer to 0 as the number

of values that satisfy the branch condition decreases, and it gets
closer to 1 as the number of values that satisfy the branch condi-
tion increases. If we think of branch as a sieve, when S(𝑏) = 0
branch 𝑏 does not allow any value to pass, and when S(𝑏) = 1
branch 𝑏 allows all values to pass. Note that, if we pick values
from the domain 𝐷 randomly with a uniform distribution, then
|𝑇𝑏 |/|𝐷𝑏 | corresponds to the probability of picking a value that
satisfies the branch condition. The branch becomes more selective
as the probability of picking a value decreases.
An Example. Consider the integer-manipulating program in Fig-
ure 2. This program is a modified version of an example from the
jpf-regression directory of the SV-COMP benchmark used for soft-
ware verification and testing competitions [8]. The target statement
is the assertion statement in line 19. The arg variable’s value is a
randomly generated integer value and it denotes the input to this
program. The question we want to answer for this program is: how
likely it is to reach the assertion statement at line 19 if we randomly
generate values for the 𝑎𝑟𝑔 variable?

The first conditional statement at line 4 ignores all the negative
values. At line 15, possible values for 𝑧 can be any randomly gener-
ated positive value, divided by 5, minus 7. Now, the assertion at line
19 is reachable when value of 𝑧 is equal to 0. The likelihood of the
value of 𝑧 being equal to 0 is low if the input is a random number
generated from a uniform distribution. Therefore, the probability
of reaching the assert statement in this program is low.

Our analysis uses branch selectivity based on model counting
to successfully determine the reachability probability of the assert
statement in this program. We inspect each branch condition lead-
ing to the assertion to determine how selective the branch is (i.e.
what ratio of input values satisfy the branch). If we assume a do-
main of integer values, then for the conditional statement 𝑎𝑟𝑔 < 0,
branch selectivity is calculated as half of the domain. Therefore, the
possible values reaching the assertion is reduced to half. Next, for
the next conditional statement, 𝑧 ≠ 0, branch selectivity is close to
1. Most values satisfy this constraint and conversely, only 1 value
of 𝑧 satisfies its negation. The assertion lies on the else branch of
this condition, making it reachable only for one value of 𝑧.

Using the branch selectivity values computed at these branches,
we convert the control flow graph of the program to a discrete time
Markov chain as shown in Figure 4c. We use a probabilistic model
checker to analyze the Markov chain and obtain a probabilistic
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measure for assertion reachability. For the running example, this
reachability probability is computed as 0.5 × (2.32𝑒−10). The value
0.5 arises from the branch selectivity for the branch condition
𝑎𝑟𝑔 < 0 and 2.32𝑒−10 arises from the branch selectivity for the
branch condition 𝑧 ≠ 0. The reachability probability of the assertion
statement is then reported as 1.16𝑒−10, hence this statement would
be classified as a hard to reach statement by our analysis since it
has a low reachability probability.

To assess the success of our analysis for this example, we run a
generator based random fuzzer with a timeout of 1 hour. We find
that the fuzzer cannot generate an input to reach the assertion.
The fuzzer generates 4,103,625 inputs and none of them reach the
assertion, which supports the result of our analysis.

Since our analysis does not precisely represent the original se-
mantics of the program, we cannot make soundness claims about
the probability computed by our heuristic. In general case, our anal-
ysis may over or under approximate the reachability probability.
By integrating abstract interpretation techniques to our analysis,
we achieve better precision which we will discuss in section 3.2.

In the following sections we discuss how we compute and use
branch selectivity values together with control flow, dependency
analysis and abstract interpretation to extract a discrete-timeMarkov
chain and then use probabilistic model checking to compute ap-
proximations of reachability probability.

3 A PROBABILISTIC REACHABILITY

HEURISTIC

We approximate P(𝑝, 𝑡) using a combination of control flow, de-
pendency analysis, abstract interpretation, model-counting and
probabilistic model checking. First, we discuss how model counting
constraint solvers and abstract domains can be used to compute
branch selectivity. Then, we use control flow and dependency anal-
ysis and branch selectivity to transform the program’s control flow
graph into a Markov chain. We form queries on this Markov chain
solvable by probabilistic model checking whose solutions approx-
imate P(𝑝, 𝑡). If P(𝑝, 𝑡) is less than a given threshold 𝑇𝐻 , target
statement is predicted as hard to reach. We discuss these steps below.

3.1 Branch Selectivity

The enabling technology for computing branch selectivity is model
counting. Model counting is the problem of determining the number
of satisfying solutions to a set of constraints. A model counting
constraint solver is a tool which, given a constraint and a bound,
returns the number of satisfying solutions to the constraint within
the bound. For a branch condition 𝑏, recall that S(𝑏) = |𝑇𝑏 |

|𝐷𝑏 | , where
𝐷𝑏 is the Cartesian product of the domains of the variables that
appear in 𝑏 and 𝑇𝑏 is the set of values in 𝐷𝑏 for which 𝑏 evaluates
to true. For a given 𝑏 and 𝐷𝑏 , a model-counting constraint solver
computes |𝑇𝑏 |. Then, using |𝑇𝑏 | we compute S(𝑏).

We use the Automata-Based Model Counter (ABC) tool, which is
a constraint solver for string and numeric constraints with model
counting capabilities [2]. The constraint language for ABC supports
linear arithmetic constraints as well as typical string operations.
In order to compute S(𝑏) we first extract the branch condition
from the program and then generate a formula in the SMT-LIB

1 public void test(int x) {
2 if(x >= 0) {
3 int y = -x;
4 if (y > 0) {
5 assert false;
6 }
7 }
8 }

(a) Using interval analysis

1 public void test(int x,
2 int z, int r) {
3 int y = 3;
4 r = x + z;
5 z = x - y - 4;
6 if (x < z)
7 assert false;
8 }

(b) Using relational analysis

Figure 3: Refined branch selectivity

format that corresponds to the branch condition. Then, we send
the formula to ABC as model counting query.

3.2 Refined Branch Selectivity

Abstract interpretation techniques overapproximate program be-
haviors by interpreting programs over abstract domains. Our key
insight here is that it is possible to use abstract interpretation to
refine and restrict the set of values that variables can take at each
branch in order to better approximate the branch selectivity. Given
a branch 𝑏, using abstract interpretation we generate a refinement
condition 𝑅𝑏 to overapproximate the set of values that the variables
can take at that branch. 𝑅𝑏 is then conjoined with 𝑇𝑏 and 𝐷𝑏 to
compute refined branch selectivity RS(𝑏). For a branch condition
𝑏, refined branch selectivity is defined as RS(𝑏) = |𝑇𝑏∧𝑅𝑏 |

|𝐷𝑏∧𝑅𝑏 | .
To implement the refined branch selectivity, we use state-of-

the-art Java numeric analysis tool JANA [41] which supports two
different abstract domains, intervals [21] and polyhedra [37], where
polyhedra domain leads to more precise results however it is less
scalable. We experimented with both of these domains to extract the
refinement conditions 𝑅𝑏 for each branch using interval analysis
and relational (using polyhedra domain) analysis. We call these
implementations PReach-I and PReach-P, respectively.

Consider the two code snippets from Fig. 3a and 3b. At line 4
in Fig. 3a, 𝑇𝑏 and 𝐷𝑏 are 𝑦 > 0 and True respectively. S(𝑏) com-
puted by PReach is 0.25 predicting incorrectly that the assertion
is reachable. Applying either interval or relational analysis, 𝑅𝑏 is
extracted as𝑦 < 0 (at line 4, possible reachable values of 𝑥 is greater
than 0 and hence possible reachable values for 𝑦 is less than 0 due
to the update on variable 𝑦 at line 3). 𝑇𝑏 and 𝐷𝑏 are updated as
𝑦 > 0 ∧ 𝑦 < 0 and 𝑦 < 0 respectively using 𝑅𝑏 and RS(𝑏) com-
puted by PReach is 0 predicting correctly that the assertion is not
reachable. Similarly, at line 6 in Fig. 3b, 𝑇𝑏 and 𝐷𝑏 are 𝑥 < 𝑧 and
True respectively. S(𝑏) is computed as 0.5 predicting incorrectly
that the assertion is reachable. Applying an interval analysis, there
will be no refinement conditions as it is not possible to catch the
relation between the variables 𝑥 and 𝑧 using the interval domain.
But, applying relational analysis using the polyhedra domain, 𝑅𝑏
is extracted as 𝑥 > 𝑧 (possible reachable values of 𝑧 is equal to
𝑥 − 7). 𝑇𝑏 and 𝐷𝑏 are then updated as 𝑥 < 𝑧 ∧ 𝑥 > 𝑧 and 𝑥 > 𝑧

respectively and RS(𝑏) is computed as 0, correctly predicting that
the assertion is not reachable.

Note that, for general function invocation including recursion,
it may be expensive to obtain precise interprocedural analysis,
reducing the effectiveness of refinement.
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3.3 Target Statement Subgraph Extraction

The control flow graph of a program is a representation of all paths
that may be traversed during execution. Given a program 𝑝 , a target
statement 𝑡 in 𝑝 and the input domain 𝐼 , we extract the control
flow graph of 𝑝 , G(𝑝), and mark the node of the control flow graph
containing the target statement 𝑡 as the node 𝑛𝑡 .

We expedite our analysis by extracting the target statement sub-
graph, G(𝑝, 𝑡) of G. G(𝑝, 𝑡) contains all the control flow graph in-
formation needed to perform our analysis. We define this subgraph
using standard concepts from control flow analysis. We define a
branch node 𝑏 in a control flow graph to be any node with more than
one outgoing edge. The corresponding merge node𝑚 of a branch
node 𝑏 is its immediate post-dominator. The component 𝐶 defined
by 𝑏 is the union of branch node 𝑏, its merge node𝑚 and all nodes
of the control flow graph reachable from 𝑏 without going through
𝑚. The maximal component of a node is the largest component
containing that node. Any non-maximal component containing
this node will be contained in this maximal component.

To extract G(𝑝, 𝑡), we first find the maximal component of 𝑛𝑡 . If
𝑛𝑡 is not contained in any component, then 𝑛𝑡 must lie on every
path through G(𝑝). Therefore, it is reached with certainty, P(𝑝, 𝑡)
= 1, and our analysis can be terminated. Otherwise, the maximal
component of 𝑛𝑡 is the maximal statement subgraph.

G(𝑝, 𝑡) is a subgraph of the maximal statement subgraph. To
obtainG(𝑝, 𝑡), we remove any component of themaximal statement
subgraph that does not contain the statement node 𝑛𝑡 . The branch
and merge nodes of these components remain in the subgraph with
one outgoing edge from the branch node to the merge node. G(𝑝, 𝑡)
results from this procedure.

Figure 4 shows the process of the target statement subgraph ex-
traction on the running example from Figure 2. Figure 4a gives the
control flow graph G(𝑝) with the statement node 𝑛𝑡 highlighted
in red. Figure 4b shows the target statement subgraph G(𝑝, 𝑡) ex-
tracted from G(𝑝). In this example, the branch corresponding to
𝑦 ≠ 0 is removed from the control flow graph structure. The deci-
sion made at this branch does not impact the probability of reaching
the target statement node.

Note that the target statement subgraph extraction phase is a
heuristic to speed up our analysis. The subsequent stages can be

performed on the entire control flow graph but this would result in
unnecessary work including extra model counting queries which
would slow down the analysis.

3.4 Markov Chain Construction

We define a weight for each edge of G(𝑝, 𝑡). These weights trans-
form G(𝑝, 𝑡) into a Discrete Time Markov Chain (DTMC), M(𝑝, 𝑡).
A DTMC is a tuple (𝑆, 𝑠, 𝑃, 𝐿) where 𝑆 is a finite set of states, 𝑠 ∈ 𝑆

is the initial state, 𝑃 : 𝑆 × 𝑆 → [0, 1] is the transition probability
matrix where

∑
𝑠′∈𝑆 𝑃 (𝑠, 𝑠 ′) = 1 for all 𝑠 ∈ 𝑆 . Each element 𝑃 (𝑠, 𝑠 ′)

of the transition probability matrix gives the probability of making
a transition from state 𝑠 to state 𝑠 ′.

We use dependency analysis in the construction of the Markov
Chain as we want to identify the branches dependent on input to
set the weights of the edges accordingly.

Dependency Analysis. A branch condition is input dependent if
the evaluation of the condition depends on the value of the pro-
gram input. Given a program and its marked input, we use static
dependency analysis to identify the input dependent branches. De-
pendency analysis provides an over approximation of the set of
branch conditions whose evaluation depends on the inputs. We use
Janalyzer [5], an existing static analysis tool, to perform the depen-
dency analysis. Janalyzer is implemented on top of the WALA [40]
program analysis framework.

Then, we construct the Markov chain by assigning weights to
each edge of G(𝑝, 𝑡). G(𝑝, 𝑡) is a directed graph: each edge begins
at a source node 𝑠 and ends at a destination node 𝑑 . Given an edge
𝑒 : 𝑠 → 𝑑 : If 𝑒 is the only edge beginning at 𝑠 , the weight of 𝑒 is 1.
Else, 𝑠 is a branch node by definition. To determine its weight we
use a combination of dependency analysis and branch selectivity.
Since 𝑏 is a branch node, there is a branch condition associated.

• If the branch condition is independent from the program
input, we weigh edge 𝑒 as follows. Let 𝐸 be the number of
edges originating at 𝑠 and 𝐸𝑡 ≤ 𝐸 be the number of edges
originating at 𝑠 which lie on a path to the target statement
node 𝑛𝑡 . If 𝐸𝑡 = 0, then the weight of 𝑒 is 1/𝐸. Otherwise, if
𝑒 lies on a path to 𝑛𝑡 weight of 𝑒 is 1/𝐸𝑡 . If 𝑒 does not lie on
a path to 𝑛𝑡 , weight of 𝑒 is 0.

• If the branch condition is dependent on the program input,
we compute the weight of the edge 𝑒 as follows. We use a
model-counting constraint solver to determine the branch
selectivity of 𝑏, S(𝑏). If 𝑒 is the edge corresponding to the if
condition, the weight of 𝑒 is S(𝑏). Else, 1 − S(𝑏).

At the end of this phase, G(𝑝, 𝑡) has been transformed into Markov
chainM(𝑝, 𝑡) where the probability of transitioning from one state
to the next is given by the edge weight.

Figure 4c showsM(𝑝, 𝑡) for the running example. The transition
probabilities are given as edge weights. The two branch conditions
yield the only non 1 edge weights in the graph. Both of these branch
conditions are input dependent as determined by the dependency
analysis. For each branch condition, the model-counting constraint
solver ABC was used to find its branch selectivity. This selectivity
was used to compute the weight of the edge corresponding to the
if branch and its complement was used to compute the weight of
the edge corresponding to the else branch.

Note that, the first-order Markov chains do not encode any con-
text sensitivity; thus branch probabilities, e.g., loop conditions,
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would always result in the same selectivity measure regardless
of the call site or iteration number.

3.5 PCTL Query Formulation

We automatically synthesize queries overM(𝑝, 𝑡), whose solutions
yield an approximation of P(𝑝, 𝑡). The query we synthesize is:

• What is the probability that the target node 𝑛𝑡 is reached at
least once?

The answer to this query approximates P(𝑝, 𝑡). We use a proba-
bilistic model checker PRISM [22], a tool that analyzes systems that
exhibit probabilistic behavior, to answer this query. We generate
a discrete time Markov chain (DTMC) model based on the syntax
supported by the PRISM tool. We can synthesize queries like what
is the probability of reaching a state in the Markov chain eventually?.

In PRISM, a PCTL formula is interpreted over the DTMC model.
Two types of formulas are supported: state formulas and path for-
mulas where path formulas occur only when there is a probabilistic
measure that needs to be included in the specification. For our
analysis, the queries we synthesize are path formulas and are of
the form 𝑃 ∼ 𝑝 [𝜙] which is the probabilistic analogue of the path
quantifiers of CTL. For example, the PCTL formula P=?[F 𝜙] states
what is the probability of reaching state 𝜙 .

The complexity of PCTL query verification for DTMC is polyno-
mial in the number of states [23]. Since the number of states of the
DTMC is linear in the size of the program, overall complexity of
PCTL query verification is polynomial of program size.

Loop Analysis. In analyzing programs which contain back edges
(either from loops or from recursion), we consider two different
queries for programs with loops.

• What is the probability that target node 𝑛𝑡 is reached at least
once within a given loop bound?

• What is the probability that target node 𝑛𝑡 is reached at least
once?

The first query enables us to model bounded loop executions. To
answer this query, we fix a loop bound and unroll any loops in the
Markov chain. If the target node 𝑛𝑡 is duplicated during this loop
unrolling process, then the query becomes

• What is the probability that any target node 𝑛𝑡 is reached at
least once?

Once the loops in the Markov Chain are unrolled, the first query
becomes the initial query on the unrolled Markov chain except that
there might be multiple instances of the target node.

In answering the second query, we leave the Markov chain as is
including any back edges and generate the DTMC model for PRISM
as it is. PRISM calculates a steady state probability for unbounded
loop scenario. Bounding the loop and asking the bounded version
of the reachability query under approximates the unbounded case.
As the loop bound increases, the solution for the bounded case ap-
proaches that of the unbounded case and in some cases it is possible
to reach the steady state probability, i.e., to reach a fixpoint. Note
that, in PRISM, we are able to compute the steady state probabil-
ity, so it is not necessary to compute the fixpoint by increasing
loop bounds. This is one of the advantages of our approach over
probabilistic symbolic execution.

4 IMPLEMENTATION

We have implemented our technique in a tool called PReach (Prob-
abilistic Reachability Analyzer) targeting programs written in Java
programming language.

Using the static analysis tool Janalyzer [5] we first extract the
control flow graph from the given program. After marking inputs
for which we want to calculate reachability probability, we use
dependency analysis for the marked inputs and identify all input-
dependent branches. We identify the target statement node and
do dominator and post-dominator analysis in order to extract the
target statement subgraph.

For calculating branch selectivity of input-dependent branches
we first translate the branch conditions to SMT-LIB format con-
straints using Spoon [31] and then we use ABC [2] for model count-
ing. To compute refined branch selectivity we applied two abstract
domains, interval and polyhedra using Jana [41], a numeric analy-
sis tool for Java. We call these implementations as PReach-I and
PReach-P respectively. We define the domain size for integers as
signed 31 bit, for strings as length of 16 with all printable ASCII
characters, for char as unsigned 8 bit integers. Once we get the
model count from ABC, we calculate the branch selectivity. To
compute bounded reachability of a target statement, we look for
back-edges and if there is one, we unroll the loop to a certain bound.
For unbounded cases, we compute the steady state probability.

Once we have all the branch selectivity values, we construct
the discrete time Markov chain (DTMC). Using the target state-
ment node, we formulate the queries to calculate the reachability
probability. We use the probabilistic model checker PRISM [22] for
computing the target statement reachability probability. We convert
the Markov chain to a DTMC model in PRISM syntax and synthe-
size queries. Then, we execute PRISM to compute the probability.
We use PRISM as it provides features to reduce the reachability
checking of a statement in a program with unbounded loops to
reachability checking of a state in DTMC. Our current implementa-
tion determines reachability probability for each target statement
separately. We can extend our approach to handle reachability of
multiple statements by synthesizing slightly more complex queries.

For collecting ground truth values of hard to reach statements,
we run a generator based random fuzzer for all the programs. We
use JQF [28] tool which is a feedback directed fuzz testing platform
for Java. JQF incorporates coverage-guided fuzz testing technique
ZEST [29].We use generator-based random fuzzing option provided
by ZEST. We set a timeout of one hour and if the fuzzer fails to
generate inputs to reach the target statement, we determine that
the target statement is hard to reach.

Note that, the PReach approach can be extended to support
alternative concrete testing techniques and the definition of hard
to reach statements can be adapted accordingly. For example, for a
random testing tool like Randoop [27] (used in the hybrid testing
tool JDoop [16]), the definition of hard to reach can be changed
by considering an input distribution that is different from uniform
distribution, by using different usage profiles [18].

5 EXPERIMENTAL EVALUATION

To evaluate PReach, we experimented on benchmark programs
from the Competition on Software Verification (SV-COMP) [8] and
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the Competition on Software Testing (Test-Comp) [9], which we
call the SV-COMP benchmark. So far, Test-Comp have only used
C programs from the SV-COMP benchmark. Among the bench-
marks used for Java in SV-COMP 2021, We use 4 modules (jayhorn-
recursive, jbmc-regression, jpf-regression, algorithms) for evalua-
tion. We mark all the non-deterministic inputs in the SV-COMP
benchmarks as inputs for reachability analysis. We use the assert
statements in these programs as target statements. We use two
criteria to select the programs from these directories for our experi-
ments. We exclude programs if one of the following two conditions
hold:

(1) Target statement reachability does not depend on the inputs:
PReach is not applicable for these programs as it assesses
reachability probability with respect to inputs.

(2) Verification tasks are specific to floating point arithmetic:
The model-counting constraint solver we use does not sup-
port constraints generated from such programs.

Based on the above criteria, our final dataset consists of a total
of 142 programs. We modify these programs in order to allow us
to run both our analysis and the generator based random fuzzer
while keeping the program semantics unchanged. These modified
programs are available at [35].

We run experiments on a virtual box equipped with an Intel
Core i7-8750H CPU at 2.20GHz and 16 GB of RAM running Ubuntu
Linux 18.04.3 LTS and the Java 8 Platform Standard Edition, version
1.8.0_232, from OpenJDK 64-Bit Server VM.

5.1 Results for the SV-COMP benchmark

Reachability probability computed by PReach is a value between 0
and 1. In order to assess how good PReach is to identify hard to
reach statements, we classify program statements to two groups:
hard to reach and easy to reach. As ground truth, we classify the
programs for which the random fuzzer is unable to reach the target
statement within the given time bound as hard to reach. We list
the number of true positives (TP: ground truth is hard to reach and
PReach predicts hard to reach); false positives (FP: ground truth is
easy to reach and PReach predicts hard to reach); true negatives (TN:
ground truth is easy to reach and PReach predicts easy to reach);
false negatives (FN: ground truth is hard to reach and PReach
predicts easy to reach). A hard to reach threshold (𝑇𝐻 ) value 0.05
means statements having reachability probability less than 0.05 are
classified as hard to reach. Then, we evaluate PReach with respect
to the ground truth.

Table 1 shows the overall precision, recall and accuracy results
of PReach-P. Precision, recall and accuracy for different implemen-
tations of PReach is shown in Table 4. We demonstrate results for
multiple values of𝑇𝐻 to analyze changes in precision, recall and ac-
curacy across the benchmarks. Reducing 𝑇𝐻 from 0.05 to 0.01 does
not change the results at all. Increasing𝑇𝐻 to 0.1 leads to interesting
changes in the results: some of the true negative cases are updated
to false positives, reducing precision and accuracy. Increasing 𝑇𝐻
to 0.25 changes the results further: the number of false positive
cases are increased and number of true negative cases are decreased.
Increasing the value of 𝑇𝐻 changes the prediction of more cases
from easy to reach to hard to reach and hence, the overall precision
is reduced from 95.8% to 79.3% and the overall accuracy is reduced

from 95.1% to 88.0%. The ability of using different threshold values
demonstrates the quantitative nature of our analysis rather than
being a fixed binary classification.

Accuracy of PReach-P setting𝑇𝐻 as 0.05 or 0.01 is 95.1%. Across
all the benchmarks, accuracy is greater than or equal to 87.0%, re-
flecting the effectiveness of our heuristic. PReach-P fails to identify
5 of the hard to reach program statements having a recall of 90.2%,
but it is very precise in identifying hard to reach program statements
with a precision of 95.8%.

Among 142 cases, only 2 cases are false positives and 5 cases
are false negatives. The remaining 135 cases are correctly classified
by PReach. The reasons behind the 2 false positive cases and the
5 false negative cases are: 1) most of the input values generated
by the fuzzer lead to exceptions and the fuzzer cannot generate
enough valid inputs, 2) the numeric analysis tool cannot handle
complex operations such as multiplication, division and modulus
between more than one variables using the abstract domains.

Experimental results show that among the 3 variations of the
tools, PReach-P performs the best with a precision, recall and
accuracy of 95.8%, 90.2% and 95.1% respectively. Without applying
refined branch selectivity, PReach cannot catch two scenarios: 1)
two dependent branch conditions cancel out each other, 2) input
values are updated in a way that the branch condition becomes
always true or false. Hence, the number of false negatives increases
from 5 to 13. PReach-I uses interval domain for refinement analysis
which is not as precise as PReach-P using a plyhedra domain. As a
result, 2 extra false negatives are introduced by PReach-I.

5.2 Probabilistic Symbolic Execution (PSE)

We provide an experimental comparison of PReach with probabilis-
tic symbolic execution (PSE) [20]. We use SPF [30] as the symbolic
execution engine for PSE. PSE is unable to analyze some of the
target programs due to unsupported constraints such as non-linear
path constraints, PReach does not face this issue as much since
it only considers branch conditions. The rest of the programs are
marked as analyzable by PSE, as shown in Table 2. For programs
where the number of recursive calls or loop iterations depend on
the input, PSE can not explore all possible paths since it can only
search programs behaviors up to a bounded execution depth (search
depth), and since the number of program paths grows exponen-
tially. Therefore, we set a timeout of 1 hour for PSE and evaluate
for different search depths. Since PSE is unable to cover all program
paths, the probabilistic measurement computed by PSE is not exact.
Increasing the search depth allows PSE to obtain more accurate re-
sults but also increases the number of program paths exponentially.
This leads PSE to time out for some programs, as shown in Ta-
ble 2. This is not the case for the jpf-regression and jbmc-regression
benchmarks, as there is no input dependent recursive calls or loops.

We show the comparison of reachability probabilities computed
by PReach and PSE in Table 3. As we do not have any ground
truth for the probability measurement, we calculate probability
differences between these two techniques and analyze the differ-
ences in case of agreement and disagreement for hard to reach
statement assessment. PReach and PSE agree if their predictions
match, disagree otherwise. Based on agreement and disagreement,
we divide all the cases into 3 groups: 1) agreement, 2) disagreement
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Table 1: Effectiveness of PReach-P in terms of precision, recall and accuracy scores for sv-comp benchmarks

Benchmarks
Threshold (𝑇𝐻 )

0.25 0.1 0.05/0.01
TP FP TN FN Precision Recall Accuray TP FP TN FN Precision Recall Accuracy TP FP TN FN Precision Recall Accuracy

jayhorn-recursive 9 1 10 3 90.0 75.0 82.6 9 0 11 3 100.0 75.0 87.0 9 0 11 3 100.0 75.0 87.0
jpf-regression 25 7 43 2 78.1 92.6 88.3 25 2 48 2 92.6 92.6 94.8 25 2 48 2 92.6 92.6 94.8
jbmc-regression 8 1 12 0 88.8 100.0 100.0 8 0 13 0 100.0 100.0 100.0 8 0 13 0 100.0 100.0 100.0
algorithms 4 3 14 0 57.1 100.0 85.7 4 3 14 0 57.1 100.0 85.7 4 0 17 0 100.0 100.0 100.0
Total 46 12 79 5 79.3 90.2 88.0 46 5 86 5 90.2 90.2 93.0 46 2 89 5 95.8 90.2 95.1

Table 2: Number of programs analyzed by PReach and Prob-

abilistic Symbolic Execution within 1 hour timeout

Benchmarks

Number of programs analyzed

PReach
Probabilistic Symbolic Execution

Analy-
zable

Analyzable with Search Depth
10 20 30 100 500 1000 ∞

jayhorn-recursive 23 21 21 17 11 6 5 1 1
jpf-regression 77 69 69 69 69 69 69 69 69
jbmc-regression 21 16 16 16 16 16 16 16 16
algorithms 21 9 9 9 9 9 8 6 2
Total 142 115 115 111 105 100 98 92 88

Table 3: Probabilistic measurement differences and hard to
reach statement prediction disagreements between PReach

(PR) and PSE

Bench-
marks

Search
Depth

#Cases
Analy-
zable

Tool

Agreement Disgreement All
Cases

Average
Diff.

PSE ✓ PReach ✓

# Avg.
Diff. # Avg.

Diff. # Avg.
Diff.

jayhorn-
recursive 10 21

PR 16 0.086 2 1.000 3 0.420 0.270
PR-I 16 0.086 2 1.000 3 0.420 0.270
PR-P 16 0.086 2 1.000 3 0.420 0.270

jpf-
regression ∞ 69

PR 58 0.050 10 0.550 1 0.250 0.083
PR-I 62 0.049 6 0.542 1 0.250 0.095
PR-P 64 0.035 4 0.625 1 0.250 0.072

jbmc-
regression ∞ 16

PR 14 0.040 2 0.250 0 - 0.066
PR-I 16 0.031 0 - 0 - 0.031
PR-P 16 0.031 0 - 0 - 0.031

algorithms 100 9
PR 3 0.087 0 - 6 0.390 0.317

PR-I 3 0.087 0 - 6 0.390 0.317
PR-P 3 0.087 0 - 6 0.390 0.317

and PSE is correct, 3) disagreement and PReach is correct. The
average difference in probability is low for the cases of agreement.
The difference is even lower for jpf-regression and jbmc-regression
benchmarks as PSE achieves very high precision and accuracy (see
Table 5) and PReach agrees with the predictions. For the cases
of disagreement, the difference is very high for most of the cases
when PSE predicts correctly but PReach does not. One of the main
reasons for this is variable updates making some of the program
paths infeasible. PSE can catch the infeasible paths whereas PReach
gives an approximate result for these cases using branch selectivity.
Both PReach-I and PReach-P can address this issue. Using refined
branch selectivity, the number of agreement cases are increased
and average probability difference is reduced for jpf-regression
and jbmc-regression benchmarks. Another reason is PReach pre-
dicting a program statement as easy to reach but the ground truth
is hard to reach as fuzzer cannot reach the target statement due
to recursion stack overflow error. Average difference is also high
for jayhorn-recursive and algorithms benchmarks when PReach

predicts correctly but PSE does not, as there is an exponential in-
crease in the number of paths and PSE poorly approximates the
probability.

We now compare these two techniques in terms of hard to reach
statement prediction accuracy and precision. To compare PReach
and PSE, we set the hard to reach threshold to 0.05. Table 4 shows
precision, recall and accuracy for PReach and PSE with search
depth 10 and 1000. We evaluate all 142 programs analyzable by
PReach. The programs for which PSE times out are marked as
easy to reach as our target is to identify the hard to reach program
statements. Different search depths do not change results for jpf-
regression and jbmc-regression benchmarks as these programs are
free of recursive calls and loops that depend on inputs. The preci-
sion and accuracy values for PReach are comparable to PSE for
these benchmarks. The prediction results are improved a lot using
PReach-I and PReach-P. For jpf-regression and jbmc-regression
benchmarks, precision, recall and accuracy are increased. For jbmc-
regression benchmarks, both PReach-I and PReach-P performs
better than PSE and for jpf-regression benchmarks, overall scores
achieved by PReach-P are better than PReach-I and very close
to the scores achieved by PSE. For jayhorn-recursive and algo-
rithms benchmarks, PSE can not achieve as good results as PReach,
PReach-I or PReach-P since these programs need to deal with
input dependent recursive calls and loops. For lower search depth
(10), PSE can not explore all the program paths and as a result
the computed probability is an under-approximation (worse than
a heuristics-based approach used in PReach). For higher search
depth (1000), most of the programs time out and hence are marked
as easy to reach. As a result there are no true-positive cases making
precision and recall values 0 as well as no false-positive cases keep-
ing the total precision high (96.9). For the algorithms benchmark,
even with search depth 10, the precision and recall is 0 as PSE can
not support most of the programs (marked as easy to reach) as ar-
ray size is input dependent and marked as symbolic, which is not
analyzable by SPF. Though for programs with bounded execution
depth due to the absence of loop and recursion (jpf-regression and
jbmc-regression benchmarks), PSE performs better than PReach
but PReach-P is as good as or even better in some cases than PSE.

We show precision and accuracy for the 85 programs in these two
benchmarks that are analyzable by PSE in Table 5. The scores for
PSE are not 100% due to situations like integer arithmetic overflow
that are not caught by symbolic execution. The precision (95.7) and
accuracy (87.1) for PReach is comparable to PSE and is impressive
given that it is a scalable heuristic approach. The precision (96.8)
and accuracy (96.5) by PReach-P is very close to the scores achieved
by PSE. Moreover, PSE performs very poorly on programs with
unbounded execution depth (jayhorn-recursive and algorithms
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benchmarks) whereas PReach, PReach-I and PReach-P have high
precision and accuracy.

Table 6 shows the average analysis time required and percentage
of cases analyzed by both of these techniques. Even for a low search
depth (10) the analysis time of PSE is higher than PReach. Note
that, lower search depths in PSE poorly approximate the probability.
However, increasing the search depth increases the analysis time
by orders of magnitude. For both jayhorn-recursive and algorithms
benchmarks, the average analysis time increases and percentage
of analyzed cases within the time bound decreases as the search
depth is increased. For the jayhorn-recursive benchmark, even
for a search depth of 30 the average analysis time increases by
an order of magnitude. This is because the number of recursive
function calls are input dependent. The average analysis time shown
in the table is less than or equal to 3600 seconds since we set
the timeout to 1 hour (i.e., 3600 seconds is the maximum analysis
time). The time for jayhorn-recursive benchmarks with search
depth greater than or equal to 30 would be very high without this
timeout. Average analysis time also increases for the algorithms
benchmarks when the search depth is increased as number of loop
iterations depend on the inputs. These results show that PSE is not
scalable for unbounded execution depth whereas PReach is.

PReach-I and PReach-P require more analysis time compared
to PSE for jpf-regression and jbmc-regression benchmarks. As pro-
grams in these benchmarks are loop and recursion free, PSE runs
fast whereas PReach-I and PReach-P perform abstract interpre-
tation for branch selectivity refinement. However, as the search
depth of the programs increases, the branch selectivity refinement
analysis time becomes less significant compared to the exponential
time increase due to path constraint solving performed by PSE,
reflected in the jayhorn-recursive and algorithms benchmarks. For
these benchmarks, as the search depth increases to 100, the analysis
time by PSE is orders of magnitude higher than the analysis time
required by PReach-I or PReach-P. These results clearly indicate
that PReach, PReach-I and PReach-P maintain a balanced trade off
between precision and scalability for probabilistic reachability anal-
ysis and among these three implementations, PReach-P performs
the best considering its high precision and accuracy.

5.3 Statistical Symbolic Execution (SSE)

In this section, we provide an experimental comparison of PReach-
P with statistical symbolic execution (SSE). Prior work has demon-
strated that SSE is more precise and faster than PSE when large exe-
cution bounds are necessary, preventing PSE from terminating [18].
SSE uses SPF [30] as the symbolic execution engine similar to PSE.
We compare PReach-P and SSE only for the jayhorn-recursive
and algorithms benchmarks from SV-COMP, as PSE achieves very
high precision and accuracy for jpf-regression and jbmc-regression
benchmarks, and we have already compared the performance of
PReach-P and PSE on those benchmarks.

SSE is unable to analyze 12 out of 44 target programs due to
inability to handle non-linear path constraints or symbolic array
indexing during symbolic execution. As before, we set a timeout of
1 hour for SSE and evaluate for different search depths. Like PSE,
SSE is also unable to explore all program paths within an hour, but
it can provide statistical guarantees for the computed probabilities

with respect to accuracy (𝜖) and confidence (𝛿) parameters [18].
SSE has two different sampling approaches: 1) Monte Carlo and
2) Informed sampling. We compare PReach-P to both of these
sampling techniques in SSE. In both cases, we set 𝜖 to be 10−5 and
target 𝛿 to be 0.99 following the experimental setup in [18]. For
Monte Carlo sampling, we set the maximum sample size (𝑁1) as
100, 000 and for informed sampling, we set 𝑁1 as 100 and maximum
number of iterations as 100.

Precision, recall and accuracy for SSE is presented in Table 7.
SSE has better precision, recall and accuracy compared to PSE but
not compared to PReach-P. Recall and accuracy for SSE drops with
increasing search depth. For algorithms, precision and recall is 0.0
(marked with a *), as there were no true positive cases among the
analyzable programs by SSE. Similar to the experimental setup for
the comparison to PSE, we mark a program statement as easy to
reach if it times out.

We do not take the reported statistical confidence into account
to determine which program statements should be marked as hard
to reach or easy to reach by SSE. One could use a threshold value for
the statistical confidence, and accept only the predictions achiev-
ing a certain confidence. In that case, the precision and accuracy
of SSE would drop further. Instead, we present average confi-
dence achieved by SSE in Table 8 separately. Statistical confidence
achieved by SSE drops as the search depth for symbolic execution
is increased and more programs time out. Even though we set a
large maximum number of samples (100,000) for Monte Carlo sam-
pling, SSE can not achieve a high confidence. On the other hand,
informed sampling can achieve high confidence with search depths
10 or 100 for some cases. But, with an infinite search depth, none
of the sampling techniques can achieve high confidence.

Average analysis time for SSE is presented in Table 8. In general,
PReach-P is orders of magnitude faster than SSE. Monte Carlo
sampling is consistently slower for all the programs compared to
PReach-P. Informed sampling performs much better than Monte
Carlo sampling. Analysis time of SSE with informed sampling is
close to PReach-P for some programs when a short search depth
value is used. But, irrespective of search depth, for a good number
of programs, informed sampling is also orders of magnitude slower
than PReach-P, and hence its average analysis time is significantly
higher than PReach.

These results demonstrate that PReach-P is more scalable com-
pared to SSE and achieves better precision and accuracy, especially
for programs containing large number of paths.

5.4 Case Studies

In this section, we evaluate the effectiveness of PReach to detect
hard to reach program statements in larger projects. We are par-
ticularly interested in program points where inputs need to pass
through numerous branches to reach. We selected a set of methods
fromApache Commons Lang [1] and DARPA STAC Benchmarks [4]
and identified target program statements. We have analyzed 24
program statements in 12 methods from Apache Commons Lang
project and 12 program statements from 6methods across 5 projects
from DARPA STAC Benchmarks.

Table 9 shows PReach results for the selected 24 cases. First,
we run PSE to compute reachability probability on all these cases.
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Table 4: Precision, Recall and Accuracy of PReach (PR) and PSE, computed for 142 programs, program is marked easy to reach
if analysis times out

Bench-
marks

Precision Recall Accuracy

PR PR-I PR-P

PSE with
Search
Depth PR PR-I PR-P

PSE with
Search
Depth PR PR-I PR-P

PSE with
Search
Depth

10 1000 10 1000 10 1000
jayhorn-recursive 100.0 100.0 100.0 76.9 *0.0 75.0 75.0 75.0 83.3 *0.0 87.0 87.0 87.0 78.3 47.8
jpf-regression 90.5 92.0 92.6 96.2 96.2 70.4 85.2 92.6 96.2 96.2 87.0 92.2 94.8 97.4 97.4
jbmc-regression 100.0 100.0 100.0 100.0 100.0 75.0 100.0 100.0 75.0 75.0 90.5 100.0 100.0 90.5 90.5
algorithms 100.0 100.0 100.0 *0.0 *0.0 100.0 100.0 100.0 *0.0 *0.0 100.0 100.0 100.0 52.4 61.9

Total 95.0 95.7 95.8 80.4 96.9 74.5 86.3 90.2 82.0 62.0 89.4 93.7 95.1 79.6 85.9

Table 5: Precision, Recall and Accuracy of PSE and PReach

(PR), out of 85 programs computedwithin 1 hour for jpf- and

jbmc-regression benchmarks

Bench-
marks

Precision Recall Accuracy
PR PR-I PR-P PSE PR PR-I PR-P PSE PR PR-I PR-P PSE

jpf-regression 94.7 95.7 96.0 96.2 69.2 84.6 92.3 100.0 87.0 92.8 95.7 98.6
jbmc-regression 100.0 100.0 100.0 100.0 66.7 100.0 100.0 100.0 87.5 100.0 100.0 100.0
Total 95.7 96.6 96.8 96.9 68.8 87.5 93.8 100.0 87.1 94.1 96.5 98.8

Table 6: Average Analysis Time for PReach (PR) and PSE,

maximum average analysis time is limited to 3600 seconds,

cases with timeout are included

Bench-
marks

Average Analysis time in seconds (% Cases Analyzed in 1 hour)

PR PR-I PR-P
Probabilistic Symbolic Execution

Search Depth
10 30 100 1000

jayhorn-
recusrive 2.43 4.35 6.16 5.34 (91%) 2048.33 (52%) 2583.22 (29%) 3428.67 ( 5%)

jpf-
regression 0.81 3.11 4.86 1.51 (91%) 1.51 (91%) 1.5 (91%) 1.51 (91%)

jbmc-
regression 0.69 4.90 6.10 3.32 (76%) 3.32 (76%) 3.32 (76%) 3.32 (76%)

algorithms 0.99 6.38 9.69 2.25 (43%) 3.98 (43%) 79.76 (43%) 2399.94 (29%)
Total 1.08 4.08 5.97 2.51 (82%) 372.50 (75%) 475.21 (71%) 808.28 (65%)

Among 18 methods we analyze we find that PSE is not able to
handle 9 methods due to either variable type conversion or lack
of support for some String library functions. PSE fails on 2 other
methods due to incapability to model count for non-linear path
constraints and another 4 methods due to lack of support for trans-
lation of expressions to string path constraints. PReach does not
have any of these issues as the underlying technique is simpler than
symbolically executing a program, and it can avoid dealing with
non-linear path constraints and complex string path constraints as
it needs to consider individual branch conditions only. Finally, PSE
successfully runs on 3 methods but for 2 of the methods it times
out, predicting only 1 case correctly as hard to reach. These results
demonstrate the limitations and poor scalability of probabilistic
symbolic execution on realistic programs. We also cannot analyze
these cases using PReach-I and PReach-P as the programs per-
form string operations and the abstract interpretation tool [41] we
use for computing refined branch selectivity is limited to numeric
analysis. Even without refining the branch selectivity, our results
for these case studies demonstrate that even the base technique
(PReach) using branch selectivity is capable of predicting hard to
reach program statements efficiently for sizable programs.

PReach can predict 19 out of 24 cases correctly with an accuracy
of 79.2% setting𝑇𝐻 as 0.001. We used the same value of𝑇𝐻 across all
domains. Different values of𝑇𝐻 for Integer/mixed domain (0.01) and
String domain (0.001) increases the accuracy to 83.33% supporting
the quantitative nature of our analysis. 5 of the cases that PReach
can not predict correctly is due to the similar reasons as SV-COMP
benchmarks. The value of the input is updated inside the program
and as a result the following branches do not depend on the initial
input value anymore.

6 RELATEDWORK

There has been an increasing amount of research on quantitative
program analysis techniques based on model counting constraint
solvers, and there has been a surge of progress in model counting
constraint solvers [2, 11, 13, 14, 24, 25]. Model counting constraint
solvers have been used in a variety of quantitative program analy-
sis tasks such as probabilistic analysis [10, 18, 20], reliability anal-
ysis [17], estimating performance distribution [15], quantitative
information flow [3, 6, 19, 33, 34], and side-channel attack syn-
thesis [7, 32, 36]. Branch selectivity and probabilistic reachability
heuristic we introduce in this paper are fundamental quantitative
program analysis techniques and rely on the recent developments
in model counting constraint solvers.

Probabilistic symbolic execution [20] and statistical symbolic
execution [18] can be used for probabilistic reachability analysis
problem we study in this paper. However probabilistic symbolic
execution suffers from path explosion [12] and increasing size of
path constraints with increasing execution depth, which can lead to
double exponential blow up. Moreover, probabilistic symbolic exe-
cution can only analyze program behaviors up to a fixed execution
depth. Statistical symbolic execution is more efficient compared
to probabilistic symbolic execution but still suffers with increas-
ing execution depth. The approach we present in this paper using
branch selectivity addresses these issues since it does not suffer
from path explosion and it analyzes branch conditions instead of
path constraints modeling behaviors of arbitrarily long paths.

Hybrid testing techniques [16, 26, 38, 39, 42] combine concrete
and symbolic techniques in order to improve effectiveness of test-
ing. Strategy function for hybrid testing need to decide when to
apply concrete techniques and when to apply symbolic. Existing
techniques assess the difficulty of concrete testing to do make the
decision based on the saturation of random testing [26, 38] or using
a predefined configuration of time to run for concrete and symbolic
techniques [16] or probabilistic program analysis [39, 42]. Markov
decision process construction extracting control flow graph and
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Table 7: Precision, Recall and Accuracy of PReach-P (PR-P) and SSE, computed for 44 programs from jayhorn-recursive and

algorithms benchmarks, program is marked easy to reach if analysis times out(1 hour), both Monte Carlo and informed sam-

pling has same precision, recall and accuracy

Benchmarks

Precision Recall Accuracy

PR-P

SSE with
Search Depth PR-P

SSE with
Search Depth PR-P

SSE with
Search Depth

10 100 ∞ 10 100 ∞ 10 100 ∞
jayhorn-recursive 100.0 100.0 100.0 100.0 75.0 75.0 75.0 58.3 87.0 87.0 87.0 78.3
algorithms 100.0 0.0* 0.0* 0.0* 100.0 0.0* 0.0* 0.0* 100.0 71.4 71.4 71.4

Total 100.0 100.0 100.0 100.0 83.3 50.0 50.0 38.9 93.2 79.5 79.5 75.0

Table 8: Average Analysis Time and statistical Confidence (𝛿) for PReach-P (PR-P) and SSE Monte Carlo (MCS) and informed

(IS) sampling, maximum average analysis time is limited to 3600 seconds, cases with timeout are included, confidence is set to

0.0 for timeout cases

Bench-
marks

Average Analysis Time Statistical Confidence (𝛿 )

PR-P

SSE-MCS with
Search Depth

SSE-IS with
Search Depth

SSE-MCS with
Search Depth

SSE-IS with
Search Depth

10 100 ∞ 10 100 ∞ 10 100 ∞ 10 100 ∞
jayhorn-recursive 6.16 1495.60 2117.46 2530.45 165.71 362.36 2038.48 0.061 0.039 0.032 0.957 0.913 0.435
algorithms 9.69 2558.30 3066.67 3071.77 2004.41 2008.00 2802.04 0.016 0.016 0.016 0.444 0.444 0.222

Total 7.84 2002.91 2577.38 2786.37 1046.43 1150.83 2406.93 0.040 0.028 0.025 0.712 0.690 0.333

Table 9: Case study of PReach on Apache Commons Lang and DARPA STAC Benchmarks. PReach predicts a statement as

hard to reach if reachability probability is less than 0.001. 19 out of 24 cases are predicted correctly

Project Class Name Method Name

Target
Statement

Line
Number

Number
of Branches
in Method

Max
#Branches
to Target
Statement

Reachability
Probability

Random
Fuzzer
Ground
Truth

PReach
Prediction

Prediction
Match

apache-commons-lang

Fraction greatestCommonDivisor 595 11 7 0.00% Yes Yes ✓

NumberUtils createNumber 759 31 25 0.00% No Yes ✗
isCreatable 1690 25 23 0.33% No No ✓

FastDatePrinter parseToken 363 7 7 7.32% No No ✓
StrTokenizer readWithQuotes 804 8 8 0.00% Yes Yes ✓
StrSubstitutor substitute 837 17 13 0.00% Yes Yes ✓
NumericEntityUnescaper translate 107 9 4 0.08% No Yes ✗
ArrayUtils shift 6994 9 9 0.00% No Yes ✗
BooleanUtils toBooleanObject 650 15 15 0.00% Yes Yes ✓
RandomStringUtils random 427 16 16 0.00% Yes Yes ✓
StringUtils containsAny 1248 8 7 0.00% Yes Yes ✓
CharSequenceUtils regionMatches 377 7 7 0.00% Yes Yes ✓

calculator_3 RomanNumeralFormatter parseObject
130

34
17 0.15% No No ✓

152 11 49.44% No No ✓
170 34 0.59% Yes No ✗

calculator_4

Arithmetizer assessParentheses 213 9 4 0.19% No No ✓
245 9 93.75% No No ✓

ImperialFormatter parseObject
70

11
4 1.37% No No ✓

96 9 24.63% No No ✓
103 11 13.99% No No ✓

emu6502 Assembler assembleLine 214 22 9 0.00% No Yes ✗
207 8 0.15% No No ✓

linear_algebra_platform MatrixSerializer readMatrixFromCSV 51 13 9 7.30% No No ✓

rsa_commander DecInputStream read 99 19 12 0.08% Yes Yes ✓

putting probabilities as edge weight has been used to find optimal
strategy for concolic testing [39]. Probabilistic path prioritization
is used in [42] to decide when to invoke symbolic execution in
hybrid fuzzing. Our approach focuses on identifying hard to reach
statements based on probabilistic reachability heuristic.

7 CONCLUSIONS

We presented a novel heuristic for probabilistic reachability analysis
to identify hard to reach program statements that uses dependency
analysis, model counting, abstract interpretation, and probabilis-
tic model checking to compute probability of reaching a program
statement given random inputs. We experimentally evaluated our
approach on a set of benchmark programs and demonstrated that
our approach can identify statements that are hard to reach with

reasonable precision and accuracy. We provided detailed compari-
son of our approach against probabilistic symbolic execution and
statistical symbolic execution, demonstrating that our approach is
more efficient and scalable.
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