
JVM Fuzzing for JIT-Induced Side-Channel Detection∗

Tegan Brennan
University of California Santa Barbara

Santa Barbara, CA, USA
tegan@cs.ucsb.edu

Seemanta Saha
University of California Santa Barbara

Santa Barbara, CA, USA
seemantasaha@cs.ucsb.edu

Tevfik Bultan
University of California Santa Barbara

Santa Barbara, CA, USA
bultan@cs.ucsb.edu

ABSTRACT
Timing side channels arise in software when a program’s execu-
tion time can be correlated with security-sensitive program input.
Recent results on software side-channel detection focus on analysis
of program’s source code. However, runtime behavior, in particu-
lar optimizations introduced during just-in-time (JIT) compilation,
can impact or even introduce timing side channels in programs.
In this paper, we present a technique for automatically detecting
such JIT-induced timing side channels in Java programs. We first
introduce patterns to detect partitions of secret input potentially
separable by side channels. Then we present an automated ap-
proach for exploring behaviors of the Java Virtual Machine (JVM)
to identify states where timing channels separating these partitions
arise. We evaluate our technique on three datasets used in recent
work on side-channel detection. We find that many code variants
labeled “safe” with respect to side-channel vulnerabilities are in
fact vulnerable to JIT-induced timing side channels. Our results
directly contradict the conclusions of four separate state-of-the-art
program analysis tools for side-channel detection and demonstrate
that JIT-induced side channels are prevalent and can be detected
automatically.

ACM Reference Format:
Tegan Brennan, Seemanta Saha, and Tevfik Bultan. 2020. JVM Fuzzing for
JIT-Induced Side-Channel Detection. In 42nd International Conference on
Software Engineering (ICSE ’20), May 23–29, 2020, Seoul, Republic of Korea.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3377811.3380432

1 INTRODUCTION
Side-channel vulnerabilities occur when a non-functional but ob-
servable behavior of a system (such as its execution time) leaks infor-
mation about the secret values that the system accesses. Although
side-channel vulnerabilities due to hardware (such as vulnerabilities

∗This material is based on research sponsored by NSF under grants CCF-1817242 and
CCF-1901098 and by DARPA under the agreement number FA8750-15-2-0087. The
U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of
DARPA or the U.S. Government.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380432

that exploit the cache behavior [13, 36, 40, 51]) have been exten-
sively studied [4, 5, 32, 35], software side channels have only re-
cently become an active area of research [9, 10, 47, 48, 55]. In recent
years, several techniques have been proposed for detecting side-
channel vulnerabilities in programs. In this paper, we demonstrate
that the most recent analysis techniques and tools [7, 12, 17, 39]
proposed for detection of side channels in Java programs miss a
class of vulnerabilities and incorrectly label programs safe.

The main cause of this failure is that side-channel detection
tools do not take dynamic behavior of the Java Virtual Machine
(JVM) into account. Runtime performance of Java programs sig-
nificantly depends on Just-In-Time (JIT) compilation techniques
which compile and optimize portions of the code based on the run-
time behavior of the program. In this paper, we demonstrate that
programs labeled safe with respect to timing side channels by four
different program analysis tools do in fact contain side-channel
vulnerabilities if the runtime behavior of the program is sufficiently
biased. We call side-channel vulnerabilities that are due to JIT opti-
mizations JIT-induced side channels, and we present an automated
approach for finding JIT-induced side-channel vulnerabilities.

Our contributions in this paper are:
• An automated pattern-based approach for finding input par-
titions that are likely to be separable by a timing side channel.
• An automated technique to generate input belonging to dif-
ferent partition cells using branch instrumentation.
• An automated search strategy for a JVM state vulnerable to
a timing channel using priming input generated via fuzzing.
• An evaluation of our approach on widely-used side-channel
detection benchmarks, demonstrating its ability to automat-
ically induce timing side channels in programs labelled safe
by four other recent analysis tools: Blazer [7], Themis [17],
CoCo-Channel [12], and DiffFuzz [39].

The rest of the paper is organized as follows. In Section 2, we
discuss JIT-induced timing side channels and provide an overview
of our automated detection process. In Section 3, we discuss our
approach for pattern-based identification of partitions of secret
input which are likely to be separable by a timing side channel.
We detail how we instrument the program to generate test input
data belonging to these partition cells. We also discuss how we use
grey-box fuzzing to generate a set of priming inputs. In Section 4,
we present an algorithm to use the generated test input data and
priming input to fuzz the JVM for vulnerabilities to JIT-induced
timing side channels. In Section 5, we evaluate our technique, dis-
cuss our experiments and highlight key results. In Section 6, we
discuss related work. In Section 7, we present our conclusions.

https://doi.org/10.1145/3377811.3380432
https://doi.org/10.1145/3377811.3380432


ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Tegan Brennan, Seemanta Saha, and Tevfik Bultan

public static boolean sanity_unsafe(int a, int b) {
int i = b;
int j = b;
if (b<0) return false;
if (a<0) {
return true;

} else {
while (i > 0) {
i--;

}
}

return false;
}

public static boolean sanity_safe(int a, int b) {
int i = b;
int j = b;
if (b<0) return false;
if (a>0) {
while (i > 0) {
i--;

}
} else {
while (j > 0) {
j--;

}
}
return false;

}
(a) (b)

Figure 1: Two examples from the Blazer benchmark.

2 OVERVIEW
Timing side-channel detection techniques investigate the follow-
ing question: Assume a program p is a function on some input I
consisting of secret input h and non-secret input l . For some fixed
l , are there at least two mutually exclusive non-empty subsets of
the secret domain h such that by observing the execution time of
the program on a secret value, one can determine to which of the
subsets the secret belongs? Note that precisely determining the
answer to this membership question may not be possible due to
either noise in the observations of the execution time or to overlap-
ping execution time behavior of secret values belonging to different
subsets of the input. So, typically, the answer we get to the question
of “Does the secret belong to a particular subset?” is not a discrete
“Yes” or “No” answer, but a quantitative answer that indicates our as-
sessment of how likely it is that the secret belongs to that particular
subset.

To automate the analysis we have to frame the problem in more
detail. First, we need to characterize what type of information about
the secret can be leaked from the program. At a high level, the type
of information that can be leaked about the secret will characterize
the subsets of the secret domain for which the membership question
is most likely answerable. One avenue through which information
can be leaked is program branches. Each branch in the program can
potentially influence the execution time. Therefore, the branches
that depend on the secret can result in timing side channels.

Consider a secret-dependent branch and the corresponding branch
condition, and assume that we divide the set of secret values to
two subsets: 1) The secret values that cause the branch condition
to evaluate to true, 2) The secret values that cause the branch con-
dition to evaluate to false. Now, also assume that by observing the
execution time, we can tell if the branch condition evaluates to true
or not (this would be possible, for example, if the evaluation of the
branch condition to true causes more expensive computation to be
undertaken). In this case, we can conclude that there is a timing side
channel and the program leaks information about the secret since
we are able to distinguish which subset that the secret belongs to.

Let us make our discussion more concrete with an example.
Figure 1(a) shows the sanity_unsafe method taken from the Blazer
side-channel detection benchmark [7]. In this example the secret
is the value of the argument a. The second if statement in the
program corresponds to a branch that is dependent on the secret. If
argument b is particularly large, it would be possible to detect if the
then or else-branch is taken. This would enable us to tell if the secret

value is less than zero. So, we can define two subsets of the secret
domain (integer values less than zero, and integer values greater
than or equal to zero), and by observing the execution time of the
method we can tell which subset the secret belongs to. Hence, we
can conclude that this method has a side-channel vulnerability and
is unsafe. And, this is exactly what the side-channel detection tools
report. Profiling the execution time of the sanity_unsafe method
shows a clear timing side-channel. The violin plot in Figure 2(a)
shows the execution time distributions for the sanity_unsafemethod
for partitions: a < 0 and a ≥ 0 for a fixed b value.

Now, let us look at the sanity_safe method in Figure 1(b). Again,
the secret is the value of the argument a, and the second if statement
in the program corresponds to a branch that is dependent on the
secret. However, for this case, both branches contain equivalent
computations, so the same computation is performed regardless of
the evaluation of the branch condition. This should imply that we
cannot tell which branch is taken by observing the execution time.

All modern side-channel analysis tools [7, 12, 17, 39] perform this
reasoning in one form or another and conclude that the method san-
ity_safe is indeed safe and does not contain a side-channel vulnera-
bility. Let us again check this conclusion by profiling. Figure 2(b)
demonstrates the execution time distribution for the sanity_safe
method for partitions a > 0 and a ≤ 0 with the same constant
value for b as used in Figure 2(a). It is clear from these distributions
that an attacker cannot determine if the secret value is greater than
zero or not by monitoring the execution time of the sanity_safe
method since the timing behaviors for two cases are very similar,
and, hence, there is no side-channel.

Unfortunately, this conclusion is wrong! The sanity_safe method
shown in Figure 1(b) does contain a timing side-channel vulnerabil-
ity. To understand why, we need to realize that the source code of
sanity_safe is not the only factor on its execution time. The runtime
environment itself plays a pivotal role in the program’s behavior.

JIT-induced Side-Channels. The runtime environment can introduce
timing channels into deceptively secure-looking programs as it at-
tempts to optimize paths that it deems “hot” [11]. Just-In-Time (JIT)
compilation is performed dynamically based on runtime behav-
ior. The JIT compiler generates optimized native code so that the
most commonly executed paths in a program execute as fast as
possible. The result is that the prior input distribution to a program
impacts its execution time on new input. Hence, if a program is
called repeatedly in a way that causes the JIT compiler to optimize
a particular execution path, then calls to the program on unknown
input can leak information about what path that input follows.

The profiling data we show in Figure 2(b) was taken with JIT-
disabled. If we enable JIT and then execute the sanity_safe method
with a biased distribution where a > 0 is highly favored, JIT compi-
lation will optimize this case. This leads to more efficient execution
time for inputs where a > 0 and introduces a timing side channel
leaking information about whether a > 0 or a ≤ 0.

We profile again to determine if this hypothesis holds. Figure 2(c)
shows the execution time distribution for the sanity_safe method
again for the partitions: a > 0 and a ≤ 0. We obtained these
distributions by enabling JIT and repeatedly executing sanity_safe
with an input distribution heavily favoring values where a > 0.
After this priming stage, we timed calls to sanity_safe on input



JVM Fuzzing for JIT-Induced Side-Channel Detection ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

a < 0 a  0
Partition cell

0.0

2.5

5.0

7.5

10.0

12.5

15.0

M
icr

os
ec

on
ds

(a) sanity_unsafe with JIT off

a > 0 a  0
Partition cell

14.65

14.70

14.75

14.80

14.85

14.90

M
icr

os
ec

on
ds

(b) sanity_safe with JIT off

a > 0 a  0
Partition cell

0

10

20

30

40

M
icr

os
ec

on
ds

(c) sanity_safe with JIT on

Figure 2: Execution time distributions for the sanity_safe and sanity_unsafe methods.

Ib+ ,Ib-

i∈ Iπ
Fuzzer 

(AFL/Kelinci)

Instrumenter
(ASM)

Iπ

Pattern 
Detector

IR

Primer

Evaluator

Input Generation JVM Fuzzing

P

Pinst
Dependency 

Analyzer

Figure 3: Automated JIT-Induced Side-Channel Detection

values from different partition cells and created a violin plot of
the resulting timing distributions. We again kept the value of the
public input b constant. The timing side channel is apparent from
the clearly separable distributions for the two partition cells.

Currently, all side-channel analysis detection tools miss this
vulnerability. This is due to its inception in the runtime behavior
and in the biased input distribution provoking the JVM into favoring
some program paths. Currently, no side-channel analysis tool can
detect this class of side-channel vulnerabilities. A bias in the input
distribution can arise for a variety of reasons. If an attacker can call
a method repeatedly, then the attacker can force the JIT compiler
to optimize a particular execution path going through a secret
dependent branch. There might also be a natural bias in the input
distribution. For example, if it is the case that most users call the
sanity_safe method with a secret value a > 0 (or visa versa), then a
JIT-induced side channel can arise based on this common behavior.

Ultimately, the key factor in forcing JIT compilation to induce
a side channel is bias in the input distribution. This is a dynamic
characteristic and the same program can be fed inputs in a countless
variety of ways. We use the term priming to mean the act of exe-
cuting a program repeatedly with a certain distribution of program
input. Three factors determine a priming strategy: the program
input used, the number of program calls made, and the bias in
the input distribution. This huge search space of possible priming
strategies calls for a systematic strategy of exploration if we have
any hope of automatically detecting a program’s vulnerability to
JIT-induced side channels.

Automating JIT-Induced Side Channel Detection. Our automated
approach consists of two main phases, outlined in Figure 3. The

first phase is the Input Generation phase. This phase has two end
goals. Given a program p taking secret input, we first will generate
pairs of partition cells (Ib+ , Ib− ), where each cell is a subset of
the secret domain. These pairs of partition cells are candidates of
mutually exclusive non-empty subsets of the secret domain that
may be distinguishable via a JIT-induced side channel.

In order to generate these partition cells, we define six program
behavior patterns to identify input partitions potentially prone to
side-channel vulnerabilities. We use static dependency analysis to
identify secret dependent branches to use in these patterns. Then,
we create an instrumented version of the program pinst , introducing
two counters for each branch. The first counts how many times the
branch condition is reached. The second counts how many times
branch condition evaluates to true. We generate a set of inputs IR ,
run pinst on these inputs and collect information for each input
based on the branch counter values. We match these values to pre-
defined behavior patterns which partition IR to yield the desired
(Ib+ , Ib− ) pairs. The lower half of the Input Generation block of
Figure 3 overviews this generation of (Ib+ , Ib− ) evaluation pairs.

The second goal of the Input Generation phase is to generate a
set of priming inputs Iπ . Values from Iπ are used to prime the JVM
to favor certain program paths in an attempt to introduce timing
side channels. We use the grey-box fuzzer AFL [53] to generate
inputs executing different paths through the program. Input values
that cover different program paths enable us to search different
ways of priming the JVMwhile searching for a JVM state vulnerable
to timing side channels.

The completion of the Input Generation phase yields a set of
priming inputs Iπ and a set of pairs of test partition cells (®Ib+ , ®Ib− ).



ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Tegan Brennan, Seemanta Saha, and Tevfik Bultan

The following JVM Fuzzing phase answers the question: For any
given pair (Ib+ , Ib− ) ∈ (®Ib+ , ®Ib− ) of input partition cells, does priming
the JVM in favor of some input iπ ∈ Iπ result in a timing side channel
through which input from Ib+and Ib−are distinguishable by their
execution time? To answer, we systematically explore different
priming strategies by iterating over different priming amounts and
priming ratios. We evaluate if we successfully induced a timing side
channel by quantifying the information leakage.

3 INPUT GENERATION
Below we discuss generation of input partitions and priming inputs.

3.1 Secret-Dependent Branch Detection
The first step of our approach is to identify secret dependent branches.
A branch is secret dependent if the evaluation of the branch con-
dition depends on the value of a secret program input. Given a
program and a set of inputs marked as secret, we use static depen-
dency analysis to identify the secret dependent branches.

We used Janalyzer [8], an existing static analysis tool, to per-
form this dependency analysis. Janalyzer constructs the system
dependence graph (SDG) [29] for a given program. A SDG is con-
structed by first extracting the call graph for the program and the
procedure dependence graph (PDG) [25] for each procedure. Nodes
of the PDG are either statements or branch conditions and edges
represent dependencies. A data dependence is a triple (d,u,v) calcu-
lated using reaching definitions analysis [38] where v is a variable
and d and u are PDG nodes, v is defined in node d , used in node
u, there is a path from d to u, and v is not redefined in between.
For example, for the sanity_unsafe procedure shown in Figure 1(a),
one such data dependence triple is (argument a, if (a<0), a). Using
SDG and PDGs, we do forward dependency analysis from all the
marked secret program inputs and identify the program statements
and branch conditions dependent on those inputs. We filter out
all other statements keeping only the branch conditions as we are
concerned about secret dependent branches only.

In our experiments, we observed that using both data and control
dependencies introduces too many spurious dependencies. Hence,
we consider only data dependencies during PDG construction but
track both explicit (direct data flow using reaching definitions anal-
ysis) and implicit flows (data flows to v occurs inside a branch
whose predicate is dependent on secret) following [17]. The end
result is a set of secret-dependent branches.

Removing control dependencies leads to unsoundness in the
dependency analysis, and our side-channel detection technique
can generate false negatives, in the sense that if we are unable to
detect a JIT-induced side-channel, that does not guarantee that the
program is free of JIT-induced side channels. On the other hand, our
side-channel detection technique does not generate false positives,
i.e., when we do report a JIT-induced side channel, it means that
there is demonstrable side channel in the program.

Although ignoring control dependencies reduces the number of
spurious dependencies, data flow analysis can still lead to spurious
dependencies. However, since we actually execute the program on
input values we generate, these will not lead to any false reports of
JIT-induced side channels.

3.2 Pattern Detection
A timing side channel is present if there are at least two mutually
exclusive subsets of the secret domain such that an attacker who is
able to observe the execution time of the program can determine
which of the two subsets an unknown secret value belongs to (under
the constraint that the secret does belong to one of the two). It is not
feasible to explore the entire set of possible partitions of the secret
domain to look for such subsets, and randomly chosen partitions
are unlikely to yield meaningful results. To reduce the space of
potential partition choices, we observe that timing side channels
typically arise due to secret-dependent branches whose evaluation
leads to an observable difference in the execution time.

We identify six program behavior patterns with respect to branch
conditions corresponding to if statements, and use these patterns
to define partitions of secret input. Matches to these patterns can
be detected via instrumentation as we describe later in this section.
One can define more patterns and corresponding partitions, how-
ever, our experiments demonstrate that these six are rich enough
to effectively detect JIT-induced side-channel vulnerabilities.

Let I denote the set of all inputs for a given program p, where,
given an input i ∈ I , p(i) denotes the run that corresponds to
executing program p on input i . We use h to denote the secret part
of the input and l to denote the non-secret (public) part. Given an
input i ∈ I to the program, we write i = ⟨l ,h⟩ to denote that the
input consists of concatenation of public and secret parts. Given
a program p, let bp denote the set of branches in the program and
bh ⊆ bp denote the set of branches with branch conditions that are
dependent on the secret h.

For any run p(i) of the program and any b ∈ bp , let #(p(i),b) be
the total number of times the branch b is reached during the run
p(i) (i.e., the number of times the condition guarding b is evaluated
during the run p(i)). Let #(p(i),b+) denote the number of times the
branch condition for b evaluates to true and #(p(i),b−) denote the
number of times the branch condition for b evaluates to false. Note
that, for all p, b, and i , #(p(i),b) = #(p(i),b+) + #(p(i),b−).

Given a set of inputs I , our goal is to partition I using a secret-
dependent branch b ∈ bh . Given a branch b ∈ bh , we partition I
into Ib+ , Ib− and I0 where I = Ib+ ∪ Ib− ∪ I0 and Ib+ , Ib− and I0
are mutually exclusive. Below, we define six patterns we use for
obtaining Ib+ , Ib− and I0.

We first consider the following pattern: b ∈ bh corresponds to
an if statement which is not in a loop or a recursive function and
can be reached at most once per each run of the program. We call
this Single Visit (SV) branch pattern. For the SV pattern, we define
Ib+ , Ib− and I0 as follows:

(1) ∀i ∈ Ib+ ∪ Ib− , #(p(i), b) = 1.
(2) ∀i ∈ Ib+, #(p(i), b+) = 1.
(3) ∀i ∈ Ib−, #(p(i), b−) = 1.
(4) Ib+ , ∅ ∧ Ib− , ∅.
(5) ∀i1, i2 ∈ Ib+ ∪ Ib−, ∀b1 ∈ bh ∪ bl , b1 , b,

#(p(i1), b1) = #(p(i2), b1) ∧ #(p(i1), b+1 ) = #(p(i2), b+1 ).

Intuitively, this partition divides the set of inputs I into those
that generate runs in which b is reached and the branch condition
evaluates to true (Ib+ , (2)) and those that generate runs in which b is
reached and branch condition evaluates to false (Ib− , (3)) subject to
the condition that all these runs agree on all other branch condition



JVM Fuzzing for JIT-Induced Side-Channel Detection ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

evaluations (5). We also require Ib+ and Ib− to be non-empty (4).
All inputs that cannot be put into Ib+ or Ib− are put into I0.

As an example, for the sanity_unsafe procedure shown in Fig-
ure 1(a), using the SV pattern we obtain the following partition of
the input domain: Ib+ = {a | a < 0}, Ib− = {a | a ≥ 0} and I0 = ∅,

Ib+ and Ib− define two subsets of the secret domain whose sep-
arability via timing observations we wish to evaluate. Note that
multiple partitions can satisfy the above criteria depending on the
behavior of the runs that are generated by the inputs in Ib+ and
Ib− regarding other conditional branches. We can explore different
partitions and if we can find one partition in which membership to
Ib+ or Ib− can be determined by timing observations, then we can
conclude that there is a timing side-channel.

The requirement that runs generated by inputs in Ib+ and Ib−
must agree on all branch condition evaluations barring those on b
itself is strong. It is possible that there might be no such partition
cells Ib+ and Ib− . For example, the evaluation of b to true could
generate runs that reach a branch condition unreachable should
b evaluate to false. This motivates our Single Visit Relaxed (SVR)
branch pattern. Under this pattern, Ib+ and Ib− are defined using
the same rules for the SV pattern, except the rule (5) is modified as:

∀i1, i2 ∈ Ib+ ∪ Ib−, ∀b1 ∈ bh ∪ bl , b1 , b,
(#(p(i1), b1) > 0 ∧ #(p(i2), b1) > 0) ⇒
(#(p(i1), b1) = #(p(i2), b1) ∧ #(p(i1), b+1 ) = #(p(i2), b+1 )).

Now, runs generated from Ib+ and Ib− need only agree on all branch
evaluations reached by every run. Through another lens, this means
that all runs share a common, possibly empty prefix and common,
possibly empty suffix. In practice, we look for partitions that maxi-
mize the size of this shared prefix and suffix.

Next, let us consider a branch b ∈ bh corresponding to an if state-
ment where b is either in a loop or in a recursive function. Hence,
b might be reached multiple times. Again, there are many ways to
partition the input domain based on such a branch condition. We
will focus on four patterns: 1) Multiple Visit All True (MVAT) and 2)
Multiple Visit All False (MVAF) and the relaxed variants of these two
patterns 3) Multiple Visit All True Relaxed (MVATR) and 4) Multiple
Visit All False Relaxed (MVAFR) which we define below.

In the MVAT pattern the branch b is visited multiple times. Ib+
consists of input values that generate runs where every time b
is reached, the branch condition evaluates to true. Ib− consists of
input values that generate runs where at least one time when b is
reached, the branch condition evaluates to false. We formalize the
MVAT pattern as follows:

(1) ∀i ∈ Ib+ ∪ Ib−, #(p(i), b) > 1.
(2) ∀i ∈ Ib+, #(p(i), b+) = #(p(i), b).
(3) ∀i ∈ Ib−, #(p(i), b−) ≥ 1.
(4) ∀i1 ∈ Ib+, ∀i2 ∈ Ib−, #(p(i1), b) = #(p(i2), b).
(5) Ib+ , ∅ ∧ Ib− , ∅.
(6) ∀i1, i2 ∈ Ib+ ∪ Ib−, ∀b1 ∈ bh ∪ bl , b1 , b,

#(p(i1), b1) = #(p(i2), b1) ∧ #(p(i1), b+1 ) = #(p(i2), b+1 ).

As with the SV pattern, we require that Ib+ and Ib− are non-
empty (5). We also require that all runs generated from inputs in
Ib+ or Ib− reach the branch b same number of times and agree on
all branch condition evaluations other than the ones for the branch
b (6). All inputs that cannot be put into Ib+ or Ib− due to above
constraints are put into I0.

In the MVAF pattern the branch b is visited multiple times. Ib+
consists of input values that generate runs where at least one time
when b is reached, the branch condition evaluates to true. Ib−
consists of input values that generate runs where every time b
is reached, the branch condition evaluates to false. We formalize
the MVAF pattern as:

(1) ∀i ∈ Ib+ ∪ Ib− , #(p(i), b) > 1.
(2) ∀i ∈ Ib+, #(p(i), b+) ≥ 1.
(3) ∀i ∈ Ib−, #(p(i), b−) = #(p(i), b).
(4) ∀i1 ∈ Ib+, ∀i2 ∈ Ib−, #(p(i1), b) = #(p(i2), b).
(5) Ib+ , ∅ ∧ Ib− , ∅.
(6) ∀i1, i2 ∈ Ib+ ∪ Ib−, ∀b1 ∈ bh ∪ bl , b1 , b,

#(p(i1), b1) = #(p(i2), b1) ∧ #(p(i1), b+1 ) = #(p(i2), b+1 ).

We also define two more patterns by relaxing the requirements
for the MVAT and MVAF patterns. For the MVATR pattern, Ib+ and
Ib− are defined as:

(1) ∀i ∈ Ib+ ∪ Ib− , #(p(i), b) ≥ 0.
(2) ∀i ∈ Ib+, #(p(i), b+) = #(p(i), b).
(3) ∀i ∈ Ib−, #(p(i), b−) ≥ 1.
(4) Ib+ , ∅ ∧ Ib− , ∅.
(5) ∀i1, i2 ∈ Ib+ ∪ Ib−, ∀b1 ∈ bh ∪ bl , b1 , b,

#(p(i1), b1) = #(p(i2), b1) ⇒ #(p(i1), b+1 ) = #(p(i2), b+1 ).

where the requirement that branch condition b is reached the same
number of times across runs generated by input in Ib+ or Ib− is
relaxed. This extends the applicability of the pattern to programs
where the choice on condition b might cause the loop or recursive
function containing b to terminate.

Similarly, we define the MVAFR pattern as:
(1) ∀i ∈ Ib+ ∪ Ib− , #(p(i), b) ≥ 0.
(2) ∀i ∈ Ib+, #(p(i), b+) ≥ 1.
(3) ∀i ∈ Ib−, #(p(i), b−) = #(p(i), b).
(4) Ib+ , ∅ ∧ Ib− , ∅.
(5) ∀i1, i2 ∈ Ib+ ∪ Ib−, ∀b1 ∈ bh ∪ bl , b1 , b,

#(p(i1), b1) = #(p(i2), b1) ⇒ #(p(i1), b+1 ) = #(p(i2), b+1 ).

In the MVATR and MVAFR patterns, similar to the the SVR
pattern, the requirement that all runs generated from input in Ib+
or Ib− agree on all branch evaluations bar b itself is relaxed. We
only require agreement on all branch conditions reached the same
number of times across the runs. Once again, in practice we choose
partitions that maximize the number of conditions agreed upon.

3.3 Branch Instrumentation
Given a program p we use dependency analysis discussed earlier
to determine the set of secret dependent branches bh . Then we
instrument the program in order to generate sets of inputs based
on the patterns above.

Given the program p and the secret dependent branches bh we
use Java bytecode manipulation and analysis framework ASM [14]
to generate an instrumented program pinst by introducing two
counters (i.e., integer variables) for each secret-dependent branch
b. One counter cb is initialized to 0 and is incremented by one
every time program execution reaches b. The other counter cb+ is
initialized to 0 and is incremented by one every time the program
execution reaches b and the branch condition for b evaluates to true.
The instrumented program pinst prints the values of these counters
when the program terminates. Given an input i , let pinst (i)[cb ] and
pinst (i)[cb+ ] denote the values of cb and cb+ printed by pinst when



ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Tegan Brennan, Seemanta Saha, and Tevfik Bultan

it is run using input i . Then, we have the following equivalences:
#(p(i),b) = pinst (i)[cb ], #(p(i),b+) = pinst (i)[cb+ ],
#(p(i),b−) = pinst (i)[cb ] − pinst (i)[cb+ ].

Next, we generate a set of inputs IR ⊆ I and run pinst on each
i ∈ IR . We focus on programs where the secret input is either
string or numeric, and we use built-in Java functions returning
pseudorandom values to build IR . Then, we look at the output of
each pinst and using the patterns SV, MVAT, and MVAF and their
relaxed variants we identify subsets Ib+ ⊆ IR and Ib− ⊆ IR for
each secret dependent branch b if the outputs generated by pinst on
IR match these patterns. The result of this step is pairs of subsets
Ib+1
, Ib−1 ; Ib+2 , Ib−2 ; . . . , one per branch condition. We denote them

as vectors ®Ib+ , ®Ib− , and use them to search for JIT-induced side
channels during the JVM Fuzzing phase.

3.4 Input Generation for Priming
JIT-induced side channels arise when a bias in the input distribution
to a program causes a program path to “heat up,” speeding up
its execution relative to other program paths. To automate the
detection of possible side channels arising from JIT, we generate
a set of possible priming inputs Iπ ⊆ I . The ideal set of priming
inputs are values that exercise different program paths. During JVM
Fuzzing phase we evaluate each priming input iπ ∈ Iπ to determine
its effectiveness at inducing a timing side channel.

We use Kelinci [31], an interface to run the grey-box fuzzer
American Fuzzy Lop (AFL) [53] on Java programs, to generate Iπ .
AFL is a genetic fuzzer designed to automatically discover interest-
ing test cases that trigger new behaviors in the targeted program.
AFL has been widely and successfully used, finding hundreds of
high-impact vulnerabilities [54] and has a large community of ac-
tive users. AFL is a coverage-based fuzzer, employing a variety of
strategies and heuristics to generate inputs that traverse different
paths in the program. It uses several different techniques such as
bit-flipping and sequential insertion of known interesting integers
to effectively trigger new program behaviors. AFL stores a witness
i ∈ I for each new program state found. We use the complete set of
witnesses found upon termination of fuzzing as Iπ . Though there
is no guarantee that AFL will be able to generate an input for every
program path, it has low overhead and less limitations in compari-
son to heavy-weight analyses such as symbolic execution, making
it a better choice for our automated analysis.

4 JVM FUZZING FOR SIDE CHANNELS
Our goal is to determine if there is any priming input iπ ∈ Iπ such
that priming in favor of iπ results in a timing side channel allowing
an attacker to distinguish Ib+ from Ib− for any two parition cells of
the input domain as defined in Section 3.

Priming the JVM. We provide the pseudocode for our priming pro-
cedure in Algorithm 1. Given a certain priming amount n, a dis-
tribution α , a priming value iπ , and a set of other input values Iπ -
iπ , the program p is called n times in total. Of those n times, an α
fraction of the calls are on the input iπ . The rest of the calls are
on a randomly chosen input value drawn from Iπ - iπ . Intuitively,
the ratio α exists to model the case where the attacker does not
have complete control over the JVM and therefore cannot prime

input :n (priming amount), α (ratio), iπ , Iπ - iπ (priming inputs)

numItersBothSides← 2(n − n · α );
numItersRemaining← (n − numItersBothSides);
for i ← 1 to numItersBothSides do

if i is odd then
call p(iπ );

else
call p(random(Iπ - iπ ));

end
end
for i ← 1 to numItersRemaining do

call p(iπ );
end

Algorithm 1: Priming

perfectly in favor of iπ . The lower the α ratio is, the less control
we assume the attacker has. We experiment with varied α values to
explore what percentage of calls to p an attacker needs to control
in order to induce a timing side channel. Similarly, we vary the
value of n to explore the needed amount of priming. Both of these
parameters inform under what scenarios an attacker will be able to
induce a timing side channel in program p.

Evaluating JVM Vulnerability. For a given priming of the JVM, we
wish to evaluate if a timing side channel has been introduced that
leaks information about the membership of some secret input i to
sets Ib+ and Ib− based on the timing of p(i). Algorithm 2 outlines
this evaluation process. Given the subsets Ib+ and Ib− , we first prime
the JVM as described above and then time a call to p on a random
input i drawn from Ib+ . We collect a timing distribution for Ib+ by
repeating this processN times. Various sources of non-determinism,
from system noise to variations in runtime decisions made by the
JIT compiler, affect the time measurements. The higher the value of
N , the more robust the statistical profile is to such noise. We repeat
this process to also collect a timing distribution for Ib− .

Given the timing distributions for Ib+ and Ib− , we compute the
conditional entropy between the membership of i and the timing
of p(i) after priming the JVM. From this, we report how much
information about the membership of i we can expect to be leaked
from a single time measurement. The membership of i encodes one
bit of information. Therefore a value of 1 means full leakage of the
membership of i and a value of 0 means no leakage.

Parameter Exploration for JVM Fuzzing. For each program p, we
have a set of pairs of input cells (®Ib+ , ®Ib− ) generated as described
in Section 3. We also have a set of priming inputs Iπ generated for
the same program using Kelinci and AFL as described in Section 3.
Now, we iterate over these parameters, in essence fuzzing the JVM
in an attempt to find a JVM state vulnerable to a timing side channel.
This process is described in Algorithm 3. For each iπ ∈ Iπ and pair
of input sets (Ib+ , Ib− ) ∈ (®Ib+ , ®Ib− ), we evaluate if priming in favor
of iπ induces a side channel allowing us to learn the membership
of an input i in sets Ib+ and Ib− . The runtime decisions controlling
JIT compilation are complex, meaning that the number of priming
iterations and priming distribution can influence whether a timing
channel is induced. Therefore, we also explore those parameters,
iterating over a set of potential priming amounts and distributions.



JVM Fuzzing for JIT-Induced Side-Channel Detection ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

input :N (profiling amount), n (priming amount), α (ratio),
imore , Iless(priming inputs), Ib+ , Ib− (profiling test input sets)

vb+ , vb− ← two empty vectors to store timing profiles;
for i ← 1 to N do

Prime(n, α , iπ , Iπ - iπ );
vb+ .append( Time(p(ib+ ← random(Ib+ )) // start with fresh JVM

end
for i ← 1 to N do

Prime(n, α , iπ , Iπ - iπ );
vb− .append( Time(p(ib− ← random(Ib− )) // start with fresh JVM

end
ComputeConditionalEntropy(vb+ , vb−);

Algorithm 2: Evaluation

input :N (profiling amount), N (priming amounts), A (ratios),
Iπ (priming inputs), (®Ib+ , ®Ib− ) (profiling test input sets)

for (Ib+ , Ib− ) ∈ (®Ib+ , ®Ib− ) do
for iπ ∈ Iπ do

for n ∈ N do
for α ∈ A do

VulnerabilityEvaluation(N , n, iπ , Iπ - iπ , Ib+ , Ib− )
end

end
end

end

Algorithm 3: JVM Fuzzing

5 EXPERIMENTAL EVALUATION
Datasets. The Blazer dataset consists of 24 benchmarks drawn
from a combination of challenge programs from the DARPA STAC
program, classic examples from the literature [26, 33, 44], and mi-
crobenchmarks constructed by the Blazer authors. The 24 bench-
marks consist of 12 unsafe programs and their “safe” variants. Ta-
ble 3a shows the LOC for the safe Blazer variants (unsafe variants
are similar. Four different program analysis tools for automated
side-channel detection have used this benchmark for evaluation.
Blazer [7], Themis [17], and CoCo-Channel[12] are state-of-the-
art static analysis tools for detecting timing side channels in Java
bytecode. They each report the vulnerability of the unsafe program
variants and the safety of the patched versions. DiffFuzz [39] is
a dynamic analysis tool for the detection of side channels. Diff-
Fuzz catches an overflow bug resulting in a timing side channel in
loopAndbranch_safe and considers that the safety of gpt14_safe is
questionable depending on an observability threshold. Otherwise,
DiffFuzz agrees with the verdicts of the other tools.

The Themis dataset consists of 10 unsafe programs and their
“safe” variants. We evaluate on the 8 unsafe programs that contain
timing side channels and their “safe” variants. Table 3b shows the
LOC for the safe Themis variants. Outside of a benchmark from
JDK6, the rest are Java programs collected from Github. Themis,
CoCo-Channel and DiffFuzz have all used this benchmark for
evaluation, agreeing on the safety of all safe variants, bar jetty_safe
where DiffFuzz detects a subtle side channel.

The DiffFuzz dataset consists of 5 unsafe programs with timing
side channels and their safe variants used in addition to the Blazer
and Themis benchmarks to evaluate DiffFuzz [39]. Table 3c shows
the LOC for the safe DiffFuzz variants. Four of these programs and
their corresponding safe variants are drawn from the open source
project Apache FtpServer [1] and the last is from an open source

authentication plugin for Minecraft servers available on Github [2].
We exclude ibasys from the DiffFuzz dataset since its secret input
is an image. Such complex data structures can be handled by our
approach by providing pseudorandom input generators for such do-
mains. However, as previously stated, our current implementation
focuses on numeric and string secret domains.

Hardware Setup.All experimentswere run on a computer equipped
with an Intel i5-6600K CPU at 3.50 GHz and 32 GB of RAM run-
ning Ubuntu Linux 16.04 (Linux 4.4.0-103) and the Java 8 Platform
Standard Edition, version 1.8.0_162, from OpenJDK.

Experimental Setup. Each program variant comes with a set of
inputs marked as secret. For each safe program variant, we first
conducted dependency analysis as described in Section 3.1, yielding
a set of secret-dependent branches. Using these branches, we gener-
ated the instrumented programs per Section 3.3. We then proceeded
to generate random secret input to the instrumented program. We
used our pattern detection scheme described in Section 3.2 on the
results to generate sets of possible partitions cells. Focusing on
programs with numeric or string input values enabled us to write a
pseudorandom input generator for each variant. For the modular ex-
ponentiation cases and password comparison functions, we placed
an upper bound on the bit length of the input integer or length of
the input string. We fixed any public input value arbitrarily. We
began matching with the more strict patterns (SV, MVAT, MVAF),
but if no partitions were found, we proceeded to their relaxed vari-
ants. We stopped the process for each applicable pattern as soon as
a partition was found. The end result is a vector of sets (®Ib+ , ®Ib− ).

We wrote a driver for Kelinci to generate the set of priming
input values Iπ for each safe variant. As AFL requires a directory
of well-formed seed input, we generated one or two seed inputs
per variant. We allowed Kelinci to run on each variant for at most
one hour and used the set of witnesses for different program states
found as Iπ for the variant.

With the Input Generation Phase complete, we performed the
JVM fuzzing given in Algorithm 3. We used a set of priming num-
bers, n = {1000, 10000, 100000, 500000} and distributions, α =
{0.5, 0.7, 0.9, 0.95, 0.998, 0.999, 0.9999} to determine the vulnera-
bility of the resulting JVM primed in favor of each iπ ∈ Iπ . We used
a profiling amount of N = 100. As a baseline, we ran each safe
variant with JIT disabled and gathered timing information for each
(®Ib+ , ®Ib− ) pair. Since priming the JVM does not matter in this case,
we did not explore the parameter space for these runs.

To determine the strength of the resulting timing channel, we
calculate the entropy of partition cell membership conditioned on
timing observation. The leakage reported is 1− this conditional
entropy. We profile multiple times to gain probability distributions
for observed execution times.

As noted by the authors of DiffFuzz [39], a NullPointerExcep-
tion in unixlogin_safe prevents it from being executable. We fixed
the issue by replacing the culprit hash comparison with a dummy
comparison. As discussed by the authors of CoCo-Channel, some
secret-dependent conditionals (such as certain null pointer checks)
in the Themis dataset were manually marked by the Themis authors
as secret-independent. We ignored the same set of secret-dependent
branches in order to obtain comparable results.



ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Tegan Brennan, Seemanta Saha, and Tevfik Bultan

Table 1: Experimental results for Blazer (top), Themis (middle) and DiffFuzz (bottom) safe variants.

Program variant
Inst.

pattern Best leakage Limited leakage Leakage w/o JIT

leakage n α avg. time (ns) leakage n α avg. time (ns) leakage avg. time (ns)
Ib+ Ib− diff Ib+ Ib− diff Ib+ Ib− diff

array_safe SV 0.995 100000 0.9990 205 16335 16130 0.741 1000 0.9000 359 434 75 0.029 286 287 1
loopBranch_safe SV 1.000 100000 0.9990 192 16020 15828 0.953 1000 0.9000 476 338 138 0.206 267 287 20
sanity_safe SV 0.995 100000 0.9990 199 13382 13183 0.337 1000 0.9000 725 685 40 0.026 343 350 7
straightline_safe SV 0.995 100000 0.9980 200 15927 15727 0.810 1000 0.9000 397 477 80 0.025 373 377 4
unixlogin_safe MVAF 0.995 10000 0.9980 329 17553 17224 0.519 1000 0.9000 620 639 19 0.114 604 640 36
modPow1_safe MVAT 0.977 1000 0.9000 16977 8512 8465 0.977 1000 0.9000 16977 8512 8465 0.033 37095 37342 247
modPow2_safe MVAT 0.995 1000 0.9990 34423 7853 26570 0.971 1000 0.9000 24520 8809 15711 0.397 36491 38220 1729
pwdEqual_safe MVAF 0.485 500000 0.9999 547 12870 12323 0.357 10000 0.7000 378 344 34 0.077 857 822 35
pwdEqual_safe MVAT 0.744 500000 0.9999 550 15877 15337 0.597 10000 0.9000 400 294 106 0.363 782 881 99
pwdEqual_safe SV 0.849 500000 0.9990 18642 529 18113 0.635 1000 0.9000 723 930 207 0.051 877 902 25
k96_safe MVAT 0.995 1000 0.9000 19952 8547 11405 0.995 1000 0.9000 19952 8547 11405 0.078 37065 37276 211
gpt14_safe MVAT 0.862 10000 0.9980 15434 43265 27831 0.306 10000 0.9000 28290 21738 6552 0.071 37305 37654 349
login_safe SV 0.967 500000 0.9999 30769 3191 27578 0.571 10000 0.7000 432 556 124 0.354 3683902128 3686425340 2523212
jetty_safe SV 1.000 100000 0.9980 302 16617 16315 0.510 1000 0.9000 610 752 142 0.120 720 759 39
jetty_safe MVAF 0.873 100000 0.9980 891 16108 15217 0.253 1000 0.9000 624 687 63 0.026 722 726 4
jetty_safe MVAT 0.860 100000 0.9990 271 16842 16571 0.178 10000 0.9000 291 362 71 0.074 721 751 30
spring_safe SV 1.000 100000 0.9980 719 19123 18404 0.067 10000 0.7000 697 774 77 0.015 4111 4198 87
tomcat_safe SVR 1.000 100000 0.9990 8943 261209 252266 1.000 1000 0.9000 16801 184082 167281 1.000 27907 168234 140327
pac4j_safe SVR 1.000 10000 0.9980 19223 188121 168898 1.000 10000 0.7000 20076 95022 74946 0.980 270478 335170 64692
apache_clear_safe SV 0.970 10000 0.9990 4677 50015 45338 0.026 1000 0.7000 5695 5721 26 0.020 195067 196100 1033
apache_stringUtils_safe MVAF 0.612 1000 0.9500 1612 2014 402 0.307 10000 0.9000 1116 1375 259 0.352 5391 5709 318

Table 2: Experimental results for Blazer (top), Themis (middle) and DiffFuzz (bottom) unsafe variants.

Program variant
Inst.

pattern Best leakage Worst leakage

leakage n α avg. time (ns) leakage n α avg. time (ns)
Ib+ Ib− diff Ib+ Ib− diff

array_unsafe SV 0.995 1000 0.9000 345 234 111 0.148 100000 0.5000 255 240 15
loopBranch_unsafe SV 0.924 100000 0.9990 16325 197 16128 0.457 10000 0.9000 707 253 454
notaint_unsafe SV 1.000 1000 0.5000 1184025 306 1183719 0.868 100000 0.9990 244693159 16331 244676828
sanity_unsafe SV 0.995 100000 0.9980 13757 204 13553 0.111 10000 0.9990 5987 233 5754
straightline_unsafe SV 0.995 100000 0.9990 16136 196 15940 0.148 100000 0.7000 201 199 2
unixlogin_unsafe MVAF 0.459 1000 0.7000 544 598 54 0.160 10000 0.5000 213 223 10
modPow1_unsafe MVAT 0.287 100000 0.9500 5661 4716 945 0.104 1000 0.5000 3250 3300 50
modPow2_unsafe MVAT 0.256 1000 0.9000 2329 2802 473 0.126 100000 0.5000 20512 20595 83
pwdEqual_unsafe MVAF 0.353 100000 0.5000 614 574 40 0.185 1000 0.5000 562 520 42
pwdEqual_unsafe MVAT 0.813 1000 0.9000 809 652 157 0.189 100000 0.9000 419 421 2
pwdEqual_unsafe SV 0.664 1000 0.9980 691 573 118 0.202 10000 0.9500 375 366 9
k96_unsafe MVAT 0.821 10000 0.9990 76023 28853 47170 0.176 10000 0.7000 11460 10886 574
gpt14_unsafe MVAT 0.995 100000 0.9990 1554 35114 33560 0.099 10000 0.7000 4233 4641 408
login_unsafe SV 0.937 500000 0.9999 5116 29735 24619 0.443 1000 0.5000 680 526 154
bootauth_unsafe MVATR 0.980 100000 0.9980 3006 30653 27647 0.022 1000 0.5000 14085 14169 84
bootauth_unsafe MVAFR 1.000 100000 0.9980 3049 39056 36007 0.044 1000 0.5000 12084 12282 198
jdk_unsafe MVATR 0.710 100000 0.9980 1073 18290 17217 0.006 1000 0.5000 3173 3963 790
jdk_unsafe MVAFR 0.400 100000 0.9980 2272 14573 12301 0.007 1000 0.5000 1019 1032 13
jetty_unsafe SV 1.000 10000 0.9000 307 749 442 0.740 500000 0.9000 457 894 437
jetty_unsafe MVAFR 0.554 100000 0.9990 369 15151 14782 0.033 1000 0.5000 765 771 6
jetty_unsafe MVATR 0.780 1000 0.9990 510 1019 509 0.002 10000 0.5000 306 322 16
orientdb_unsafe MVATR 1.000 500000 0.9999 436 9818 9382 0.024 1000 0.5000 531 559 28
orientdb_unsafe MVAFR 0.244 1000 0.9500 623 735 112 0.038 10000 0.5000 363 395 32
picketbox_unsafe MVATR 0.755 100000 0.9990 795 19197 18402 0.013 1000 0.5000 448 487 39
picketbox_unsafe MVAFR 0.417 500000 0.9999 1188 6925 5737 0.063 1000 0.5000 616 641 25
spring_unsafe SV 1.000 100000 0.9990 656 19705 19049 0.012 1000 0.5000 2479 2563 84
tomcat_unsafe SVR 1.000 10000 0.7000 6699 246234 239535 0.810 1000 0.5000 17496 208251 190755
pac4j_unsafe SVR 1.000 10000 0.9000 18232 106287 88055 0.498 10000 0.5000 20891 32312 11421
apache_clear_unsafe SV 1.000 100000 0.9990 311 19244 18933 0.181 10000 0.5000 329 426 97
apache_md5_unsafe MVAFR 0.016 1000 0.9990 15704 16138 434 0.009 1000 0.5000 14082 14197 115
apache_stringUtils_unsafe MVAF 1.000 1000 0.9990 461 2732 2271 0.341 10000 0.5000 505 920 415
authMeReloaded_unsafe MVAFR 0.025 10000 0.9990 197046 198718 1672 0.003 1000 0.9000 203260 207381 4121

Table 3: Size of experimental subjects

(a) Dataset information for Blazer

Program variant
Program
size (LOC)

array_safe 17
loopBranch_safe 27
nosecret_safe 5
sanity_safe 18
straightline_safe 13
unixlogin_safe 53
modPow1_safe 14
modPow2_safe 17
pwdEqual_safe 18
k96_safe 27
gpt14_safe 12
login_safe ? 21

(b) Dataset information for Themis

Program variant
Program
size (LOC)

bootauth_safe 74
jdk_safe 36
jetty_safe 77
orientdb_safe 134
picketbox_safe 208
spring_safe 41
tomcat_safe 100
pac4j_safe 104

(c) Dataset information for DiffFuzz

Program variant
Program
size (LOC)

apache_clear_safe 186
apache_md5_safe 159
apache_saltedPW_safe 191
apache_stringUtils_safe 29
authmreloaded_safe 40 ?



JVM Fuzzing for JIT-Induced Side-Channel Detection ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

We also evaluated our approach on the unsafe program variants
in order to explore how JIT can impact timing side channels already
present at the source code level. In most cases, the secret-dependent
branches of the safe variants can be matched to corresponding
branchs in their unsafe variants. Hence, we evaluate the separabil-
ity of the same (®Ib+ , ®Ib− ) pairs across the safe and unsafe variants.
This allows us to evaluate the appearance of the “same” timing side
channel across both versions. Likewise, we used the same prim-
ing input across matching variants. We note that the public values
chosen are not necessarily those which maximize the existing side
channel in the unsafe variants. In fact, the (®Ib+ , ®Ib− ) pairs do not even
necessarily correspond to the timing channels originally present
in the unsafe variant. The experiments on the unsafe versions are
not aimed at finding the strongest side channels, but are shown as
a comparison for the behavior found in the safe variants. The nose-
cret_safe, bootauth_safe, jdk_safe, orientdb_safe, picketbox_safe and
authMeReloaded_safe variants have no secret-dependent branches
and the apache_md5_safe and apache_salted_safe variants have no
secret-dependent branches where both evaluations of the branch
are possible. Therefore, we performed our instrumentation and
fuzzing technique on their unsafe variants to generate (®Ib+ , ®Ib− )
and Iπ in order to evaluate those programs.

5.1 Experimental Results and Discussion
The results of our experiments on the “safe” Blazer, Themis and
DiffFuzz variants are given in Table 1. We report the name of the
variant under test and the partition template matched. We report
the highest leakage we observed, the parameters (priming number
and distribution) leading to that leakage, and the average execu-
tion times of the program on input values from the sets Ib+ and
Ib− and the difference between these average execution times. We
report the average execution times to give a sense of the observ-
ability of the resulting side channel. This is a consideration for an
attacker with more limited timing capabilities and provides a more
refined characterization of the side channel. Blazer, Themis, CoCo-
Channel and DiffFuzz all report a static variant of the maximal
cost difference across program paths; what we report is the runtime
counterpart, which is a more realistic measure for observability.

We additionally report two other scenarios. First, we report the
leakage and difference in execution time when JIT is disabled. These
results provide a base line and are used to evaluate to what degree
JIT optimization is responsible for any timing side channels as
opposed to secret-dependent timing imbalance in the source code.
Then, we report the maximum leakage and difference in execution
time under what we call the “limited" priming scenario. In this
scenario, the number of priming iterations is capped at 10,000 and
the strongest distribution considered is 0.9. This scenario gives
us a sense of how well an attacker with limited capabilities could
leverage JIT to induce side channels.

Our automated framework was able to induce large timing side
channels in all “safe” program variants in the Blazer dataset with
the exception of notaint_safe. These results contradict the results
reported by four state-of-the-art analysis tools. We were able to
induce large timing side channels in the Themis variants jetty_safe
and spring_safe and the DiffFuzz variants apache_clear_safe and
apache_stringUtils_safe. We also observed timing side channels

in tomcat_safe and pac4j_safe, though we found these side chan-
nels to be present (though mitigated) even when JIT is disabled.
The remaining safe Themis variants along with DiffFuzz auth-
MeReloaded_safe and Blazer variant notaint_safe do not contain any
secret dependent branches. TheDiffFuzz variants apache_md5_safe
and apache_saltedPW_safe contain a secret-dependent branch but
only one evaluation of that branch is satisfiable.

Our results are validated at runtime, demonstrating the existence
of the timing channels. In many cases, the conditional entropy
reported is close to 1, meaning that an attacker would be able to
deduce the membership of the secret input with almost certainty
after one timing observation. Additionally, the difference in the
average execution time of input from Ib+and those from Ib− can
be on the order of tens of microseconds even for Blazer variants
where the largest safe variant has only 20 basic blocks.

There are two scenarios in which no side channel was found in
the safe variants: 1) when there is no secret dependent branch and
2) when any secret-dependent branch always evaluates to the same
result. For password checking functions, safe variants were created
by replacing secret-dependent branches with bit-wise manipulation
code and, hence, these safe variants are resilient to JIT-induced side
channels. Our observations point to potential mitigation techniques
against JIT-induced side channels.

Our results for the case when JIT is disabled confirm that JIT
compilation is responsible for the timing side channels. In almost
all cases, disabling JIT eliminates the timing side channel and the
information leakage. In loopBranch_safe, a small timing channel is
reported. This is consistent with source-code-level analysis which
reports a small imbalance between the relevant program paths.
The small magnitude of this side channel implies that it is not
likely to be observable in scenarios where our much larger JIT-
induced timing channels would be. A timing side channel is also
present in modPow2_safe. We believe this is because of slightly
different multiplication done across the relevant paths which may
vary in cost. Similar reasoning explains the timing side channel in
apache_stringUtils_safe, where a variable cost instruction is likely
the cause of the smaller side channel observed. We believe the side
channel in pwdEqual_safe (MVAT)might be due to CPU level branch
prediction. Finally, the small side channel reported in login_safe is
likely due to the small number of samples taken (100) relative to
the noise of the program.

As mentioned earlier, tomcat_safe and pac4j_safe both contain
side channels even when JIT is disabled. In the case of tomcat_safe,
this is congruouswith the observationmade by both theThemis and
CoCo-Channel authors that the side channel is mitigated in the
safe variant but not removed. Significant non-trivial computation
is performed in this application and it is possible that the static
models used in previous tools did not capture the program cost
realistically. Likewise, tomcat_safe involves error handling code
concerning interactions with an external database and it is likely
that the static models for these computations were approximate.

Our results in the Limited Priming Scenario are also informative.
In all cases except apache_string_safe, the amount of leakage about
the membership of the secret input is higher than the scenario
when JIT is disabled. In some cases, such as jetty_safe, the resulting
timing side channel is significantly smaller than the Best Priming
Scenario and only tens of nanoseconds separate the timings of input



ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Tegan Brennan, Seemanta Saha, and Tevfik Bultan

I(b+) I(b-)
Partition cell

0

5

10

15

20

25

M
icr

os
ec

on
ds

(a) array_safe under Best Priming

I(b+) I(b-)
Partition cell

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55

M
icr

os
ec

on
ds

(b) array_safe under Limited Priming

I(b+) I(b-)
Partition cell

0.2

0.3

0.4

0.5

0.6

0.7

M
icr

os
ec

on
ds

(c) array_safe with JIT disabled

Figure 4: Execution time distributions for the array_safe variant under the Best Priming, Limited Priming and without JIT.

from the partition cells. In other cases such as k96_safe, however, a
timing side channel of tens of thousands of nanoseconds separates
the timing distributions. Thus, even an attacker with more limited
capabilities may be able to leverage JIT-induced side channels.

The results of our experiments on the unsafe Blazer, Themis
and DiffFuzz variants are given in Table 2. We do not report re-
sults for the apache_saltedPW_unsafe variant of DiffFuzz since
we do not find any input matching one of our partition patterns.
Again, we do not aim to find the strongest side channel in the un-
safe variant but to evaluate the impact of different priming strate-
gies on the behavior of side channels. For example, our results on
bootauth_unsafe show that a powerful side channel present in some
JVM states all but disappears in others. In some cases, most notably
modpow1_unsafe and modpow2_unsafe, no extremely strong side
channel is detected. As mentioned previously, the public input val-
ues used in these experiments are not guaranteed to be values for
which the intended side channel is strong in the unsafe variants.
Additionally, the programs do differ from their safe variants so a
priming strategy successful in inducing a timing side channel in
the safe version might not be in the unsafe one. We believe this
explains the lower leakage for some programs. Overall, our results
on the unsafe variants further demonstrate the significant impact
the runtime can have over timing side channels.

Coverage of Secret-Dependent Branches. In a few safe variants,
additional branches were marked as secret dependent. In both loop-
Branch_safe and login_safe, an additional branch was marked but,
as in the apache_md5_safe and apache_saltedPW_safe variants, the
condition associated with the branch could only ever be evaluated
one way. Any path with the opposite evaluation is unrealizable.
Therefore, there are no results reported for these cases. k96_safe,
gpt14_safe,modpow1_safe modpow2_safe and apache_stringUtils_safe
all have a branch condition nested within a loop but we only report
results for either the MVAT or MVAF pattern. The other pattern is
not applicable as the branch conditionmust evaluate to true (or false
in the case of apache_stringUtils_safe) at least once. unixlogin_safe
also marks a branch condition inside a loop as secret dependent, but
only the MVAF pattern is evaluated. Neither the input generation
responsible for (Ib+ , Ib− ) or AFL could find input satisfying the
MVAF pattern. In this case, such an input exists but is very spe-
cific. Running AFL for longer or providing better seed input might
enable it to find the input. Evaluation of apache_md5_unsafe and
authMeReloaded_unsafe is limited to MVAFR for the same reason.

Importance of Priming Input. Table 1 reports the leakage val-
ues for the best priming input iπ per variant. A more nuanced

look at the experiments is needed to understand the impact of the
choice of priming value. In some cases, such as straightline_safe, all
priming input values generated by Kelinci were effective at intro-
ducing a timing side channel. This simple program has only one
secret-dependent branch, and the timing side channel is introduced
regardless of which of the two program paths is favored. In other
cases, such as pwdEqual_safe (MVAT), only a single priming input
effectively introduced a timing side channel.

Relation of (Ib+ , Ib− ) to the secret input. How much danger an
attacker being able to separate (Ib+ , Ib− ) poses can be answered in
part by considering the size of the (Ib+ , Ib− ) relative to the entire
input domain. In some programs, such as straightline_safe and
array_safe, Ib+∪ Ib− is the entire secret domain for the fixed public
input. In others, such as the MVAF pattern of jetty_safe, (Ib+ , Ib− ) is
the entire domain of possible secret input of a fixed length (we chose
length 4). This means that if an attacker is aware that the secret
input is of length 4, she will be able to determine the membership
of that input. Another part of the answer depends on the relative
sizes of (Ib+ , Ib− ) to each other. In sanity_safe, for instance, the set
of possible secret inputs is evenly divided between (Ib+and Ib− ).
However, in theMVAT pattern of jetty_safe, the only string of length
4 always matching a public string of length 4 is that public string
itself. Therefore, answering the membership query is equivalent to
determiningwhether or not the secret is a certain exact string. There
are certainly applications where even this is dangerous (suppose a
branch condition allows you to learn if an anonymous user is in fact
a particular celebrity); however, less information about the secret
itself can be learned in this case. Ultimately, we demonstrate the
existence of a side channel. This is the same question that Blazer,
Themis, CoCo-Channel and DiffFuzz concern themselves with.
The follow up question of how much information the side channel
leaks about the secret itself is left to other analyses.

Potential Patches. Our results indicate that any JIT-enabled sys-
tem is vulnerable to a timing side channel arising from biased input
distributions. One potential patch is to disable JIT. However, doing
so critically impacts the performance of the JVM. For example, the
execution time of one call to login_safe is under 500 nanoseconds
with JIT optimization and over 3 seconds when JIT is disabled. Dis-
abling JIT slows this program by a factor of more than 7000000
times. Such performance loss would render Java programs unusable
for many applications. Selectively disabling JIT only for highly sen-
sitive, security-critical code would mitigate this performance loss
but ultimately results in a trade-of between performance and secu-
rity that needs to be reconciled. Another potential option would be



JVM Fuzzing for JIT-Induced Side-Channel Detection ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

replace just-in-time compilation with ahead-of-time compilation
(AoT) [46], where all optimization and code generation is done
before running the program and runtime statistics are not used in
optimization decisions. It is thus likely to be more robust against
side channels introduced at runtime and this additional security
could be another reason to adopt it for certain security-critical meth-
ods. Finally, our results on variants such as notaint_safe motivates
replacing secret dependent branches with bit-wise manipulation
code as a mitigation.

6 RELATEDWORK
JIT-Induced Side Channels. The fact that dynamic compilation can
introduce side-channel vulnerabilities has been noted before [42].
More recently, JIT compilation has been shown to be responsible
for side-channel vulnerabilities in open source Java applications
that leak information even over the noisy public internet [11]. Our
work addresses a hitherto unexplored dimension of JIT-induced
side channels – the automation of their detection. We present a
framework for systematically exploring the huge set of possible
JVM states and evaluate their vulnerability to side channels. Our
focus on automation, and the framework we present for automation,
clearly differentiates our contributions from earlier work on this
class of side channels [11, 42]. We also evaluate our technique
on widely-used datasets from the literature, providing the first
evaluation of this new class of side channels on existent datasets.

Compiler-based Mitigation Strategies. Compiler-based mitiga-
tion techniques for side-channel vulnerabilities have been con-
sidered [20, 21, 49]. In fact, leveraging the statistical profiling in-
formation which is the crux of JIT-induced side channels has been
proposed as part of a mitigation strategy [49]. We believe that in-
tegrating these strategies into the JVM has potential as a possible
remedy for JIT-induced side channels, though their effectiveness
would require investigation. However, at present none of these
techniques have been integrated with the most widely used JVM,
HotSpot, which remains vulnerable to JIT-induced side channels.

Side-Channel Detection. A significant body of research has been
done in the field of software side-channel detection. Blazer [7]
performs a grammar-based analysis to decompose execution traces
into different partitions and then verifies properties of each partition
to prove a program’s resilience to timing side channels. Themis
introduces a variant of Cartesian Hoare Logic concerned with a
program’s resource usage to generate proofs about themaximal cost
difference across program paths. CoCo-Channel [12] performs
a compositional analysis, generating a symbolic cost expression
for each program component and using SMT solvers to answer
pertinent questions about the maximal cost difference incurred by
components. All three of these static analysis tools are ignorant
of any potential impact the runtime might have over a program’s
execution time. They only consider the source code of a program
under test and, as such, they are unable to detect JIT-induced side
channels. DiffFuzz [39] is a differential fuzzing technique aimed
towards finding program executions that maximize a cost difference.
This dynamic tool confirms the safety of the safe Blazer variants,
because, like its static counterparts, it does not consider the JVM’s
state during its exploration. Differential analyses are also used to
automatically detect vulnerabilities in SSL/TLS [50]. Other dynamic

approaches to side-channel detection analyze the network traffic
of web applications in a black-box manner [16, 37, 47]. Type-based
approaches to side-channel detection [6, 28] and approaches specific
to cache-side channels [22, 27] have also been proposed. Currently,
no static or dynamic approach to side-channel detection considers
the state of the JVM as a factor in assesing side channels.

Other research is aimed towards the quantification of side-channel
vulnerabilities [9, 43]. Research in this area aims at asking not sim-
ply if a program leaks information through a side channel, but
how much information about the secret is leaked. These analyses
rely on symbolic execution and suffer from poor scalability. Exten-
sions to these approaches to perform attack synthesis on programs
vulnerable to side channels [10, 45, 48] have also been explored.

CPU-induced side-channels. Other classes of side-channel attacks
such as cache attacks and branch prediction analysis (BPA) attacks
leverage the runtime-dependent behavior of CPUs. Cache-based
side-channel attacks [13, 30, 36, 41, 51] have been theoretically an-
alyzed for years and have also been demonstrated as very powerful
techniques to recover sensitive information in pragmatic scenarios.
Side channels can also be introduced into security-sensitive code
through the branch prediction mechanism of the CPU [3–5]. As
a result, the CPU’s branch predictor unit has been exploited in
different flavours of timing side-channels [23, 24, 34]. All this work
considers the impact of runtime behavior on the processor. We
instead concern ourselves with its impact on the JVM.

JVM testing. There is prior work on testing JVM implementa-
tions [15, 18, 19, 52]. Our work does not look for errors in JVM
implementations, but rather investigates if and when JIT compila-
tion causes timing side channels.

7 CONCLUSIONS
We demonstrated that timing side channels in software are not a
static phenomenon but can be introduced dynamically into pro-
grams through biased input distributions. In particular, the just-
in-time (JIT) compilation mechanism, which is critical for the per-
formance of Java programs, can be leveraged to introduce timing
channels into programs that do not contain side-channel vulnera-
bilities when JIT is disabled. We have developed and evaluated an
automatic technique to fuzz the JVM in order to detect JIT-induced
side channels. We use this technique to show that the previously
safe labeled variants of the well-known and studied benchmarks
are vulnerable to JIT-induced timing side channels, contradicting
the results of four state-of-the-art analysis tools. We conclude that
JIT-induced side channels are prevalent and the side channel vulner-
ability detection techniques have to take into account the impact
of a program’s runtime during side channels analysis.

REFERENCES
[1] [n. d.]. Apache FtpServer. https://mina.apache.org/ftpserver-project/. Accessed:

2018-08-21. ([n. d.]).
[2] [n. d.]. Authentication plugin for the Bukkit/Spigot API. https://github.com/

AuthMe/AuthMeReloaded. Accessed: 2018-08-21. ([n. d.]).
[3] Onur Acıiçmez, Shay Gueron, and Jean-Pierre Seifert. 2007. New branch predic-

tion vulnerabilities in OpenSSL and necessary software countermeasures. In IMA
International Conference on Cryptography and Coding. Springer, 185–203.

[4] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. 2007. On the power of
simple branch prediction analysis. In Proceedings of the 2nd ACM symposium on
Information, computer and communications security. ACM, 312–320.

https://mina.apache.org/ftpserver-project/
https://github.com/AuthMe/AuthMeReloaded
https://github.com/AuthMe/AuthMeReloaded


ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Tegan Brennan, Seemanta Saha, and Tevfik Bultan

[5] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. 2007. Predicting se-
cret keys via branch prediction. In Cryptographers Track at the RSA Conference.
Springer, 225–242.

[6] Johan Agat. 2000. Transforming out timing leaks. In Proceedings of the 27th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages. ACM,
40–53.

[7] Timos Antonopoulos, Paul Gazzillo, Michael Hicks, Eric Koskinen, Tachio Ter-
auchi, and ShiyiWei. 2017. Decomposition instead of self-composition for proving
the absence of timing channels. In ACM SIGPLAN Notices, Vol. 52. ACM, 362–375.

[8] Daniel Balasubramanian, Zhenkai Zhang, Dan McDermet, and Gabor Karsai.
2017. Janalyzer: A Static Analysis Tool for Java Bytecode. ISIS 17 (2017), 104.

[9] Lucas Bang, Abdulbaki Aydin, Quoc-Sang Phan, Corina S Păsăreanu, and Tevfik
Bultan. 2016. String analysis for side channels with segmented oracles. In Pro-
ceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering. ACM, 193–204.

[10] L. Bang, N. Rosner, and T. Bultan. 2018. Online Synthesis of Adaptive Side-
Channel Attacks Based OnNoisy Observations. In 2018 IEEE European Symposium
on Security and Privacy (EuroS P). 307–322. https://doi.org/10.1109/EuroSP.2018.
00029

[11] Tegan Brennan, Nicolás Rosner, and Tevfik Bultan. 2020. JIT Leaks: Inducing
Timing Side Channels through Just-In-Time Compilation. In Proceedings of the
41st IEEE Symposium on Security and Privacy (to appear).

[12] Tegan Brennan, Seemanta Saha, Tevfik Bultan, and Corina S Păsăreanu. 2018.
Symbolic path cost analysis for side-channel detection. In Proceedings of the 27th
ACM SIGSOFT International Symposium on Software Testing and Analysis. ACM,
27–37.

[13] Billy Bob Brumley and Risto M Hakala. 2009. Cache-timing template attacks.
In International Conference on the Theory and Application of Cryptology and
Information Security. Springer, 667–684.

[14] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. 2002. ASM: A code ma-
nipulation tool to implement adaptable systems. In In Adaptable and extensible
component systems.

[15] Andrea Calvagna and Emiliano Tramontana. 2013. Automated Conformance
Testing of Java Virtual Machines. In Seventh International Conference on Complex,
Intelligent, and Software Intensive Systems, CISIS 2013, Taichung, Taiwan, July 3-5,
2013. 547–552.

[16] Peter Chapman and David Evans. 2011. Automated black-box detection of
side-channel vulnerabilities in web applications. In Proceedings of the 18th ACM
conference on Computer and communications security. ACM, 263–274.

[17] Jia Chen, Yu Feng, and Isil Dillig. 2017. Precise Detection of Side-Channel
Vulnerabilities using Quantitative Cartesian Hoare Logic. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security. ACM,
875–890.

[18] Yuting Chen, Ting Su, and Zhendong Su. 2019. Deep differential testing of JVM
implementations. In Proceedings of the 41st International Conference on Software
Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019. 1257–1268.

[19] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. 2016.
Coverage-directed differential testing of JVM implementations. In Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016. 85–99.

[20] Jeroen V Cleemput, Bart Coppens, and Bjorn De Sutter. 2012. Compiler mitiga-
tions for time attacks onmodern x86 processors. ACMTransactions on Architecture
and Code Optimization (TACO) 8, 4 (2012), 23.

[21] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn De Sutter.
2009. Practical mitigations for timing-based side-channel attacks on modern x86
processors. In Security and Privacy, 2009 30th IEEE Symposium on. IEEE, 45–60.

[22] Goran Doychev, Boris Köpf, Laurent Mauborgne, and Jan Reineke. 2015. Cacheau-
dit: A tool for the static analysis of cache side channels. ACM Transactions on
Information and System Security (TISSEC) 18, 1 (2015), 4.

[23] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2016. Jump
over ASLR: Attacking branch predictors to bypass ASLR. In Microarchitecture
(MICRO), 2016 49th Annual IEEE/ACM International Symposium on. IEEE, 1–13.

[24] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, Dmitry Ponomarev,
et al. 2018. BranchScope: A New Side-Channel Attack on Directional Branch Pre-
dictor. In Proceedings of the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems. ACM, 693–707.

[25] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The Program
Dependence Graph and Its Use in Optimization. ACM Trans. Program. Lang. Syst.
9, 3 (July 1987), 319–349. https://doi.org/10.1145/24039.24041

[26] Daniel Genkin, Itamar Pipman, and Eran Tromer. 2015. Get your hands off
my laptop: Physical side-channel key-extraction attacks on PCs. Journal of
Cryptographic Engineering 5, 2 (2015), 95–112.

[27] Shengjian Guo, Meng Wu, and Chao Wang. 2018. Adversarial symbolic execu-
tion for detecting concurrency-related cache timing leaks. In Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ACM, 377–388.

[28] Daniel Hedin and David Sands. 2005. Timing aware information flow security
for a javacard-like bytecode. Electronic Notes in Theoretical Computer Science 141,

1 (2005), 163–182.
[29] S. Horwitz, T. Reps, and D. Binkley. 1988. Interprocedural Slicing Using Depen-

dence Graphs. In Proceedings of the ACM SIGPLAN 1988 Conference on Program-
ming Language Design and Implementation (PLDI ’88). ACM, New York, NY, USA,
35–46. https://doi.org/10.1145/53990.53994

[30] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. 1998. Side channel
cryptanalysis of product ciphers. In European Symposium on Research in Computer
Security. Springer, 97–110.

[31] Rody Kersten, Kasper Luckow, and Corina S Păsăreanu. 2017. POSTER: AFL-
based Fuzzing for Java with Kelinci. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2511–2513.

[32] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, StefanMangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. 2018.
Spectre attacks: Exploiting speculative execution. arXiv preprint arXiv:1801.01203
(2018).

[33] Paul C Kocher. 1996. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Annual International Cryptology Conference. Springer,
104–113.

[34] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus
Peinado. 2017. Inferring fine-grained control flow inside SGX enclaves with
branch shadowing. In 26th USENIX Security Symposium, USENIX Security. 16–18.

[35] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
2018. Meltdown. arXiv preprint arXiv:1801.01207 (2018).

[36] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. 2015. Last-
level cache side-channel attacks are practical. In Security and Privacy (SP), 2015
IEEE Symposium on. IEEE, 605–622.

[37] Luke Mather and Elisabeth Oswald. 2012. Quantifying Side-Channel Information
Leakage from Web Applications. IACR Cryptology ePrint Archive 2012 (2012),
269.

[38] Flemming Nielson, Hanne R Nielson, and Chris Hankin. 2015. Principles of
program analysis. Springer.

[39] Shirin Nilizadeh, Yannic Noller, and Corina S Pasareanu. 2018. DifFuzz: Dif-
ferential Fuzzing for Side-Channel Analysis. arXiv preprint arXiv:1811.07005
(2018).

[40] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and coun-
termeasures: the case of AES. In Cryptographers’ Track at the RSA Conference.
Springer, 1–20.

[41] Dan Page. 2002. Theoretical use of cache memory as a cryptanalytic side-channel.
IACR Cryptology ePrint Archive 2002 (2002), 169.

[42] Daniel Page. 2006. A Note On Side Channels Resulting From Dynamic Compila-
tion. https://eprint.iacr.org/2006/349.pdf. Cryptology ePrint archive (2006).

[43] Corina S. Pasareanu, Quoc-Sang Phan, and Pasquale Malacaria. 2016. Multi-run
Side-Channel Analysis Using Symbolic Execution and Max-SMT. In IEEE 29th
Computer Security Foundations Symposium, CSF 2016, Lisbon, Portugal, June 27 -
July 1, 2016. IEEE Computer Society, 387–400. https://doi.org/10.1109/CSF.2016.34

[44] Corina S Pasareanu, Quoc-Sang Phan, and Pasquale Malacaria. 2016. Multi-run
side-channel analysis using Symbolic Execution and Max-SMT. In Computer
Security Foundations Symposium (CSF), 2016 IEEE 29th. IEEE, 387–400.

[45] Quoc-Sang Phan, Lucas Bang, Corina S Pasareanu, Pasquale Malacaria, and Tevfik
Bultan. 2017. Synthesis of Adaptive Side-Channel Attacks. In Computer Security
Foundations Symposium (CSF), 2017 IEEE 30th. IEEE, 328–342.

[46] Todd A Proebsting, Gregg M Townsend, Patrick G Bridges, John H Hartman,
Tim Newsham, and Scott A Watterson. 1997. Toba: Java for Applications-A Way
Ahead of Time (WAT) Compiler.. In COOTS. 41–54.

[47] Nicolás Rosner, Ismet Burak Kadron, Lucas Bang, and Tevfik Bultan. 2018. Profit:
Detecting and Quantifying Side Channels in Networked Applications.

[48] Seemanta Saha, Ismet Burak Kadron, William Eiers, Lucas Bang, and Tevfik
Bultan. 2019. Attack Synthesis for Strings Using Meta-Heuristics. SIGSOFT Softw.
Eng. Notes 43, 4 (Jan. 2019), 56–56. https://doi.org/10.1145/3282517.3282527

[49] Jeroen Van Cleemput, Bjorn De Sutter, and Koen De Bosschere. 2017. Adaptive
compiler strategies for mitigating timing side channel attacks. IEEE Transactions
on Dependable and Secure Computing (2017).

[50] Yuan Xiao, Mengyuan Li, Sanchuan Chen, and Yinqian Zhang. 2017. STACCO:
Differentially Analyzing Side-Channel Traces for Detecting SSL/TLS Vulnera-
bilities in Secure Enclaves. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’17). ACM, New York, NY, USA,
859–874. https://doi.org/10.1145/3133956.3134016

[51] Yuval Yarom and Katrina Falkner. 2014. FLUSH+ RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack.. In USENIX Security Symposium. 719–
732.

[52] Takahide Yoshikawa, Kouya Shimura, and Toshihiro Ozawa. 2003. Random Pro-
gram Generator for Java JIT Compiler Test System. In 3rd International Conference
on Quality Software (QSIC 2003), 6-7 November 2003, Dallas, TX, USA. 20.

[53] Michal Zalewski. 2017. American fuzzy lop (AFL) fuzzer. http:// lcamtuf.coredump.
cx/afl/ (2017).

[54] Michal Zalewski. 2017. The bug-o-rama trophy case. http:// lcamtuf.coredump.cx/
afl/#bugs (2017).

https://doi.org/10.1109/EuroSP.2018.00029
https://doi.org/10.1109/EuroSP.2018.00029
https://doi.org/10.1145/24039.24041
https://doi.org/10.1145/53990.53994
https://eprint.iacr.org/2006/349.pdf
https://doi.org/10.1109/CSF.2016.34
https://doi.org/10.1145/3282517.3282527
https://doi.org/10.1145/3133956.3134016
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/#bugs
http://lcamtuf.coredump.cx/afl/#bugs


JVM Fuzzing for JIT-Induced Side-Channel Detection ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

[55] Kehuan Zhang, Zhou Li, Rui Wang, XiaoFeng Wang, and Shuo Chen. 2010. Side-
buster: automated detection and quantification of side-channel leaks in web

application development. In Proceedings of the 17th ACM conference on Computer
and communications security. ACM, 595–606.


	Abstract
	1 Introduction
	2 Overview
	3 Input Generation
	3.1 Secret-Dependent Branch Detection
	3.2 Pattern Detection
	3.3 Branch Instrumentation
	3.4 Input Generation for Priming

	4 JVM Fuzzing for Side Channels
	5 Experimental Evaluation
	5.1 Experimental Results and Discussion

	6 Related Work
	7 Conclusions
	References

